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The plausibility of competing statistical models may be as-
sessed using penalized log-likelihood criteria such as the AIC,
which is given by AIC = −2lnL + 2k (L being the maximum
likelihood estimate and k the number of free parameters). The
raw AIC values can be transformed to AIC model weights by
wi = exp(− 1

2∆AICi)/
∑R

r=1 exp(− 1
2∆AICr), where ∆AICi =

AICi − min(AIC) and R is the total number of candidate
models (e.g., Burnham and Anderson, 2001). Recent work
in statistical biology has suggested that model weights can
also be obtained from the nonparametric bootstrap (e.g.,
Buckland, Burnham, and Augustin, 1997). The nonparamet-
ric bootstrap method samples, with replacement, n values
from the observed data x = (x1, x2, . . . ,xn) to obtain M
bootstrap replications {x∗(1), . . . ,x∗(M)}. After the compet-
ing models are fit to each of the M replications, the aver-
age weight method (e.g., Burnham and Anderson, 2002, p.
172) calculates AIC weights for each bootstrap sample and
then takes the average of these weights. The selection fre-
quency method (e.g., Buckland et al., 1997) constructs an
AIC weight for model i by determining the proportion of M
samples in which model i has the lowest (i.e., preferred) raw
AIC value. Despite the recent popularity of nonparametric
bootstrapping of goodness-of-fit criteria, it should be noted
that both näıve bootstrapping schemes are biased and can
render misleading results. This is best illustrated by a sim-
ple example for which the correct sampling distribution is
known.

Consider a logistic model for the mortality rate (binomial
coefficient µ) of a simulated beetle, Tribolium digitalis. The
model has CS2 dosage (dose = {0, 1, 2, 4, 8, 16}) and gender
(male = 1, female = 0) as predictors: µ = {1 + exp[−(α + β ·
dose + γ · gender)]}−1. At each level of dose, mortality rates
of 10 male and 10 female beetles were recorded. In our sim-
ulations, we defined the generating model for the popula-
tion to be α = −2, β = 1

2 , γ = 0 (i.e., no gender effect). We

sampled K = 500 independent data sets from this popula-
tion model, and fitted to each data set both the true γ =
0 model and the less parsimonious model in which γ is a
free parameter. As shown in the top left panel of Figure 1,
the distribution of −2(lnLγ=0 − lnLγ=free) closely approxi-
mates the χ2

df=1 distribution expected according to theory.
The top right panel shows the average sampling distribution
obtained when the nonparametric bootstrap is applied to the
same K = 500 independent samples, each sample in turn cre-
ating its own bootstrap distribution with M = 500 replica-
tions. The difference between the two distributions is strik-
ing. Analytically, the expected value of the nonparametric
bootstrap distribution is asymptotically equal to 2, whereas
the expected value for the χ2

df=1 distribution is 1 (Bollen
and Stine, 1992). The reason for the failure of the näıve
bootstrap is that for a particular sample the null-hypothesis
(i.e., γ = 0) does not hold exactly (cf. Bollen and Stine,
1992).

This disparity between the theoretical sampling distribu-
tion and the bootstrap sampling distribution has profound
implications for the computation of model weights. The bot-
tom left panel of Figure 1 shows the distribution of model
weights for the true γ = 0 model, based on the same K = 500
samples that yielded the approximate χ2

df=1 distribution in the
top left panel. Note that the maximum weight for the γ = 0
model is e/(e + 1) ≈ 0.731, since its AIC value can only be 2
better than that of the model with γ free. The bottom right
panel shows the distribution of weights resulting from the non-
parametric average weight method, which consistently yields
lower AIC weights for the true γ = 0 model than expected
based on theory. As regards the nonparametric selection fre-
quency method, the mean selection frequency for the γ = 0
model is about 0.681, and this is substantially lower than the
selection frequency expected according to theory based on the
χ2
df=1 distribution (i.e.,

∫ 2
0 χ2

df=1 ≈ 0.843, since AIC values are
equal when −2(lnLγ=0 − lnLγ=free) = 2). The demonstration
that the näıve nonparametric bootstrap yields model weights
that are biased against the simple model can have at least
two negative consequences. First, if model weights are used to
quantify evidence, the plausibility of the complex model will
be overestimated. Second, model averaged inference quantifies
the contribution of each model-by-model weights. Nonpara-
metric bootstrap weights will spuriously increase the impact
of the complex model, and this will hurt inference because
parameter estimates for complex models are more variable
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Figure 1. Top left panel: Sampling distribution for −2(lnLγ=0 − lnLγ=free) obtained by repeatedly sampling from the γ = 0
population model (bar graph), and the theoretical χ2

df=1 distribution (line). Top right panel: Same as the top left panel, except
that the sampling distribution is obtained from nonparametric bootstrap distributions for each sample from the γ = 0 model
used in the top left panel (for details of the quantile averaging procedure see Ratcliff, 1979). Bottom left panel: Distribution of
weights for the γ = 0 model calculated from the simulated distribution in the top left panel. Bottom right panel: Distribution
of weights for the γ = 0 model calculated from the nonparametric average weight method.

than those for simple models1 (cf. Burnham and Anderson,
2001).

1 This generality was supported by an additional simulation based
on 10,000 samples that were generated independently from the γ =
0 model. The true γ = 0 model estimated α and β to be on average
−2.074 (σ = 0.414) and 0.525 (σ = 0.101), respectively. For the model
where γ is an additional free parameter, the estimates for α and β were
−2.102 (σ = 0.500) and 0.532 (σ = 0.112), respectively. Recall that the
true values were α = − 2 and β = 1

2 .
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The authors replied as follows:

The results of Wagenmakers et al. are incontrovertible. The
thrust of their letter is that we bias against a simple model
when that simple model is true. This is unsurprising; we never
intended our methods to be applied when truth was sim-
ple. We stated in the introduction of Buckland et al. (1997):
“Different philosophies suggest different methodologies for in-
corporating model selection uncertainty into inference. Our
philosophy is that truth is high (effectively infinite) dimen-
sional. The more information that is gathered, the greater is
the model complexity that the data can support. If data are
sparse, they can support only a simple model with few param-
eters. In our view, model selection is the process of identifying
the best approximating model, accepting that the data can
never support, and we can never identify, the true model.”
These circumstances clearly do not apply to the example of
Wagenmakers et al., for which truth has just two dimensions
(since γ = 0). Bayes Information Criterion (BIC) weights are
likely to be more appropriate for such an example than AIC
weights; nevertheless, we have reservations about what can be
inferred from simulation studies in which truth has implau-
sibly low dimension. The conclusions of Wagenmakers et al.,
that the plausibility of the complex model is overestimated

and that nonparametric bootstrap weights spuriously increase
the impact of the complex model, only follow when truth is
low dimensional.

The title “Näıve nonparametric bootstrap model weights
are biased” raises the question: biased for what? Burnham
and Anderson (2002, p. 428–429) distinguish between model
selection probabilities πi, estimated by AIC selection within
bootstrap resamples to give π̂i, and AIC weights wi . In prac-
tice, the π̂i might be taken as estimates of wi , but substan-
tial bias might be expected in some circumstances, such as
when truth has very low dimension. Results relating to πi

are given by Burnham and Anderson (2002, p. 158–163), and
clarification of the differences between πi and wi are noted by
Burnham and Anderson (2002, p. 171–172).

In Buckland et al. (1997) and in Burnham and Anderson
(1998, 2002), our objectives were to improve model prediction;
improve confidence interval coverage and variance estimation;
and to gain insights into which models provide reasonable ap-
proximations to truth. They were not to draw correct infer-
ence, on the assumption that a low-dimension model in the
set under consideration is the true model.
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