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Although it is generally accepted that the spread of a response time (RT) distribution increases with the
mean, the precise nature of this relation remains relatively unexplored. The authors show that in several
descriptive RT distributions, the standard deviation increases linearly with the mean. Results from a wide
range of tasks from different experimental paradigms support a linear relation between RT mean and RT
standard deviation. Both R. Ratcliff’s (1978) diffusion model and G. D. Logan’s (1988) instance theory
of automatization provide explanations for this linear relation. The authors identify and discuss 3 specific
boundary conditions for the linear law to hold. The law constrains RT models and supports the use of the
coefficient of variation to (a) compare variability while controlling for differences in baseline speed of
processing and (b) assess whether changes in performance with practice are due to quantitative speedup
or qualitative reorganization.
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In many psychological experiments, the efficiency of mental
processing is quantified by response time (RT; Laming, 1968;
Link, 1992; Luce, 1986; Townsend & Ashby, 1983). For instance,
in the lexical decision task, high-frequency words (e.g., SMOKE)
are classified faster than are low-frequency words (e.g., FUME),
supporting the claim that in lexical decision, high-frequency words
are processed more efficiently than are low-frequency words.
Because RT is both informative and easy to measure, it has
become one of the most important dependent variables in psycho-
logical research. Attention has traditionally centered on changes in
mean RT across experimental conditions. In separate literatures on
aging and practice effects, the focus has widened to include RT
variability as a useful indicator of cognitive performance (for
aging, see Hultsch, MacDonald, & Dixon, 2002; Li, 2002; Mac-
Donald, Hultsch, & Dixon, 2003; Shammi, Bosman, & Stuss,
1998; for practice, see Heathcote, Brown, & Mewhort, 2000;
Logan, 1988, 1992). In mathematical psychology, several models
have been extended to make detailed predictions regarding the
shape of the entire RT distribution (e.g., Bogacz, Brown, Moehlis,

Holmes, & Cohen, 2006; Brown & Heathcote, 2005; Logan, 1988,
1992; Ratcliff & Smith, 2004; Usher & McClelland, 2001).

Empirical evidence and theoretical considerations point to sev-
eral general characteristics of RT distributions in psychological
tasks (cf. Ratcliff, 2002). First, RT distributions are decidedly
nonnormal—they are almost always skewed to the right. Second,
this skew increases with task difficulty. Third, the spread of the
distribution increases with the mean. Although the above charac-
teristics are so general as to invite the term “law,” surprisingly
little work has been done to quantify the regularities. An exception
is Luce’s (1986, p. 64) analysis of Chocholle’s (1940) data, in
which he noted that the standard deviation of RT was remarkably
linear in mean RT for a signal-detection experiment. In this article,
we attempt to sharpen the third law of RT distributions in psy-
chology; that is, we aim to quantify the precise empirical relation
between RT mean and RT variability.

This research was inspired by a recent analysis of the diffusion
model, a successful model for how people make speeded decisions
(e.g., Ratcliff, 1978, 2002). The diffusion model predicts that when
task difficulty increases, RT mean and RT standard deviation
increase at the same rate (Wagenmakers, Grasman, & Molenaar,
2005). That is, the diffusion model predicts that the relation
between RT mean and RT standard deviation is linear. The present
work began as a test of this prediction.

The outline of this article is as follows. The first section shows
that four out of five commonly used descriptive RT distributions
naturally accommodate a linear relationship between RT mean and
RT standard deviation. The second section shows that data from a
wide range of experimental paradigms support the assertion that
the relation between RT mean and RT standard deviation is linear.
The third section provides an explanation of the linear relationship
in terms of the diffusion model (cf. Wagenmakers et al., 2005), and
the fourth section provides an explanation of the linear relationship
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in terms of the instance theory of automatization (e.g., Logan,
1995). The fifth section discusses three situations for which the
linear law has been shown to fail—these are all situations in which
the diffusion model is known to be inappropriate. The sixth section
discusses the theoretical and practical implications of the strong
linear relation between RT mean and RT standard deviation, and
the seventh section concludes the article.

Descriptive RT Distributions
A descriptive RT distribution allows researchers to succinctly

describe the observed data. The estimated parameters of the de-
scriptive distribution may be used to quantify and test the effects
of experimental manipulations (cf. Hervey et al., 2006; Rouder,
Lu, Speckman, Sun, & Jiang, 2005). Several descriptive distribu-
tions are in use, and all of them accommodate the universal right
skew in RT data. Here, we consider the ex-Gaussian, the shifted
lognormal, the shifted Wald, the shifted Weibull, and the Gumbel
distribution (see, e.g., Heathcote, Brown, & Cousineau, 2004).

Interest centers on the nature of the relation between mean and
standard deviation as a function of task difficulty. Table 1 summarizes
the results of our analyses (see Appendix A for details). The ex-
Gaussian, shifted lognormal, shifted Weibull, and Gumbel distribu-
tions all provide natural accounts of a linear relationship between
standard deviation and mean RT, provided certain parameters are
used to index task difficulty. For each distribution, the parameter that
ensures a linear relationship if it indexes task difficulty is � for the
ex-Gaussian, � for the shifted lognormal, � for the shifted Weibull
distribution, and � for the Gumbel distribution. The shifted Wald
distribution is the only descriptive RT distribution that does not
accommodate a linear relationship between mean and standard devi-
ation for any simple parameter changes.

A corollary of our result is the inverse interpretation of the prior
paragraph: When considering parameter estimates from the four
descriptive RT distributions that generate a linear relation between
RT mean and RT standard deviation, the parameters mentioned
may be interpreted as estimates of task difficulty. Another corol-
lary of our result is that when a researcher reports certain param-
eters as estimates of task difficulty, he or she implicitly acknowl-
edges that the relation between RT mean and RT standard
deviation is linear.

Empirical Evidence

Analysis 1: A Single Experiment

We reanalyzed data from a study by Brown, Marley, Donkin,
and Heathcote (2006). Their experiment was well suited to the
current task: There were 28 separate within-subject conditions, and
sufficient data were collected from each participant to avoid av-
eraging data across participants. The experimental task was abso-
lute identification. Participants were shown eight lines of different
lengths—the shortest line was called Line 1, the longest line was
called Line 8. On each trial, participants were shown one line and
asked to decide which of the eight lines it was. Responses were
timed accurately using a microphone and voice key. Nine partic-
ipants each contributed 5,600 responses, divided into 70 blocks of
80 trials each; blocks were alternately assigned to speed or accu-
racy emphasis conditions. During speed emphasis blocks, partici-
pants were instructed to respond as quickly as they could, and

during accuracy emphasis blocks, participants were instructed to
take their time to ensure a high accuracy rate. Within each of the
35 speed and accuracy emphasis blocks, 20 blocks used all eight
lines as stimuli, 10 blocks used only the central four lines (Lines
3, 4, 5, and 6), and 5 blocks used only two lines (Lines 4 and 5).
For full details of the experimental design, see Brown et al.’s
article.

Brown et al.’s (2006) design resulted in 200 observations from
each of 28 within-subject conditions for 9 participants. Below, we
analyze those 28 conditions separately, after removing RTs asso-
ciated with incorrect responses. Calculations of variance are sen-
sitive to outliers, so we censored RTs greater than 2.5 s, eliminat-
ing 2.9% of the overall data. The exclusion of these outlier RTs did
not influence the qualitative pattern of results.

We calculated 28 means and standard deviations for each of the
within-subject conditions for each participant. These are shown in
Figure 1, with nine panels for the 9 participants (in no particular
order). A linear relationship between mean and standard deviation
is evident for all participants. Also shown on Figure 1 are lines of
best fit, and the r values in the lower right corners show the
strength of the linear relationships. The same axis values are used
for all plots to aid comparisons.

The r values ranged from .86 to .96, with a mean of .92,
indicating a very strong linear relationship between mean and
standard deviation (when RTs longer than 2.5 s were included, the
mean r was .90). These kinds of high correlations are not common
for psychological phenomena; in RT research, they are usually
only observed for other laws of RT, such as Fitts’s law1 (Fitts,
1992) or the Hick–Hyman law (Hick, 1952; Hyman, 1953; Mc-
Millen & Holmes, 2006). The high correlations are particularly
impressive because both correlated variables (mean and standard
deviation) were estimated with noise. Other laws, such as the
Hick–Hyman law, Fitts’s law, or the law of practice, have only one
random variable, with the other fixed by design. We would like to
point out that the high correlations are not due to the fact that for
some participants the data appear to form two clusters (i.e., one for
speed emphasis and one for accuracy emphasis): Correlations
calculated just within the accuracy emphasis cluster are about as
high as those for the total data set.

To give an idea of how strong the linear relationship is, the
standard error of prediction, averaged across participants, was just
49 ms for estimating standard deviation from an observed mean
RT and just 81 ms for estimating mean RT from standard devia-
tion. This result is quite promising, but of course it is dangerous to
base our conclusions on data from just one experiment.

Analysis 2: Nine More Experiments

To explore the generality our findings, we reanalyzed data from
a survey of RT experiments used by Heathcote et al. (2000) to
investigate changes in RT with practice. The survey included 17
data sets, of which we were able to use only nine (the other data
sets had fewer than eight within-subject conditions, making them
inappropriate for the analyses below). These nine data sets covered
a range of paradigms, from visual search tasks to memory exper-
iments and problem-solving tasks, and included data from 127

1 For an overview, see http://en.wikipedia.org/wiki/Fitts’_law.
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participants. We refer to the nine experiments with the alphanu-
meric codes shown in Table 2. A description of the data sets and
references to the original publications can be found in Appendix B
(see Heathcote et al., 2000, for more details).

For each of these nine experiments, we split the data according
to the within-subject conditions described in Appendix B. Each
within-subject condition also included a practice effect condition,
which we (arbitrarily) split into four levels. We then proceeded as
for the absolute identification experiment above: We calculated the

mean and standard deviation for each condition and then calcu-
lated the r value representing the strength of linear association
between mean and standard deviation for each participant. Figure
2 shows box plots of the r values obtained for the nine experiments
(right-hand side), as well as a box plot of the r values taken from
Figure 1 (left-hand side) for reference.

Each of the nine experiments presented essentially the same
results as our analyses of the absolute identification experiment.
The correlations between mean RT and standard deviation of RT

Table 1
Relation Between the Mean and the Standard Deviation for the Most Popular Descriptive
Response Time Distributions

Distribution Relation

Ex-Gaussian

Pdf

f(x) �
1

��2�
exp��2

2�2 �
x��

� � �
��

[(x��)/�]���/�	

exp� �
y2

2�dy

M � � �

SD ��2 � �2

Relation Linear as a function of � if � � �.

Shifted lognormal

Pdf f�x	 �
1

�x � 
	��2�
exp� �

1

2� ln�x � 
	 � �

� � 2�
M 
 � exp �� �

1

2
�2�

SD �exp�2� � �2��exp��2	 � 1	

Relation Linear as a function of �; linear as a function of � if �  2.

Shifted Wald

Pdf
f(x) �

a

�2��x�
)3 exp��
[a � ��x � 
�2

2�x � 
	 �
M 
 � a/�

SD �a/�3

Relation Nonlinear.

Shifted Weibull

Pdf f(x) � c��c(x � 
)c�1exp� � ��x � 
	/��c�

M 
 � ���c�1 � 1	

SD ����2c�1 � 1	 � �2�c�1 � 1	�1/2

Relation Linear as a function of �.

Gumbel

Pdf f(x) �
1

�
exp� � �x � �	/� � exp� � �x � �	

� ��
M � � 0.578�

SD ��/�6

Relation Linear as a function of �.

Note. See Appendix A for more details regarding the different distributions. Relation refers to the relation
between mean and standard deviation. Pdf � probability density function.
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were strong for almost all participants. The mean r across all
participants in all experiments was .87: Only 11 out of the 136
participants showed an r � .75, and about two thirds of the
participants (99 out of 136) yielded an r  .85. The analysis of
data that include practice level as a factor is complicated by
changes in mean RT within conditions. For example, in the initial
stages of practice, RT can change dramatically because of fast
improvement. This change can artificially inflate variability esti-
mates, confounding true variability in RT with changes in mean
RT. We did not control for this confound in the analyses above.
However, we recalculated all analyses using detrended mean RT

and standard deviation estimates. Detrended estimates were ob-
tained by fitting exponential curves to each practice series (see
Heathcote et al., 2000, for methodological details). Then, for each
within-subject condition, the ordinary standard deviation used
above was replaced by the standard deviation of residuals from the
exponential function estimate. This detrending operation produced
results only a little weaker than those shown in Figure 2: The mean
r was .83; only 32 out of the 136 participants yielded an r � .75,
and 61 out of 136 participants yielded an r  .85.

Statistical Tests

To check that the relationship between the mean and standard
deviation truly was linear or close to linear, we first applied the
Wald–Wolfowitz runs test. This algorithm tests the null hypothesis
that the residuals from the linear fit are random by assessing the
number of times their signs (positive or negative) alternate. We
took the residuals from the linear regression of standard deviation
on mean RT for each individual participant in each of the 10 data
sets described above. We controlled familywise error by applying
Bonferroni’s correction within each data set. That is, to keep the
chance of making a Type I error at about 5% for each of the 10 data
sets, we used a significance level of .05 divided by the number of
participants within that data set. The results supported our conclu-
sion that the relationship between mean and standard deviation is
linear: Of the 10 data sets, 6 of them never demonstrated a
violation of the null hypothesis. Three other data sets (namely, C3,
C1, and M1) each yielded just one violation of the null hypothesis
(out of 5, 4, and 24 tests, respectively). The remaining data set
(V3) showed just two significant tests (out of 16).

As a second statistical check, we tested the null hypothesis of a
perfectly linear relation between mean and standard deviation (i.e.,
r � 1). If this null hypothesis is exactly true, one would expect 7
out of the 136 data sets to be rejected at the .05 level. In reality, the
null hypothesis was rejected in 15 out of 136 data sets—
impressive, given the stringent nature of the test. Out of the 15 data
sets for which the perfectly linear relation was rejected, 12 came
from data set V3. This data set has a large number of conditions,

Figure 1. Standard deviation of response time (RT) versus mean RT
(both in seconds). Each plot represents one participant. There were 28
within-subject conditions, shown by crosses. Also shown are lines of best
fit and r values for each participant.

Figure 2. Box plots of r values for the participants in each of 10
experiments. The left-most box plot represents the nine r values from
Figure 1 (the absolute identification experiment [AbsID]). The other nine
box plots represent similar analyses for nine experiments from other
laboratories and other researchers (see Table 2 and Appendix B for further
details). Letter and number combinations for data sets refer to type of task
and data set number. V � visual search; C � counting; M � mental
arithmetic; A � alphabetic arithmetic.

Table 2
Summary of Data Set

Source
Data set

name Censor

Brown et al. (2006) AbsID RT � 2.5
Palmeri (1997) C1, C2, C3 None
Rickard & Bourne (1996) M1 0.2 � RT � 5.0
Rickard (1997) M2 None

A1 0.2 � RT � 10.0
Heathcote & Mewhort (1993) V1, V3 None
Carrasco et al. (1998) V2 None

Note. See Appendix B for descriptions of the experiments. The censor
column presents the criteria used, if any, to censor outliers from the data
set. We used censoring specified by the original authors of each data set.
Letter and number combinations for data set names refer to type of task and
data set number. AbsID � absolute identification; RT � response time;
C � counting; M � mental arithmetic; A � alphabetic arithmetic; V �
visual search.
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and this leads to the rejection of the null hypothesis whenever the
correlation falls below .92.

Comparison Against Alternative Measures of Dispersion

We further tested the linearity of the relationship between mean
and standard deviation of RT by using two other measures of
dispersion: variance and interquartile range. We used these two
measures to establish whether the linear relationship between
mean and standard deviation was somehow privileged or was
generally true for any measure of dispersion. For each of the two
dispersion measures, we repeated the analyses presented above,
arriving at a measure of linearity for each individual participant’s
data (the correlation, r, between the dispersion measure and the
mean RT). We compared these correlations with those obtained
using the standard deviation, as shown in Table 3. The relationship
between the mean and standard deviation is more linear than either
of the relationships between the mean and the variance or the mean
and interquartile range. This is true in aggregate over the nine
experiments and also within each and every individual data set.
Further, the mean correlation values are always greater for the
relationship between mean and standard deviation than for either
of the other two relationships.

In a final analysis, we set out to compare the model that assumes
a linear relation between mean and standard deviation against a
more general model that can also account for nonlinear relations.
In particular, we compared a linear model (L) that describes the
data as SD � a � b � M against an alternative model (N) that adds
a parameter c to capture nonlinearities: SD � a � b � Mc. Because
the models are nested, the more complex nonlinear Model N will
always fit the data better than the linear Model L. The empirical
issue is whether the increase in goodness of fit obtained by adding
the extra parameter c is large enough to warrant the additional
complexity of Model N over Model L (cf. Wagenmakers & Wal-
dorp, 2006). Using classical nested-model tests on the difference in
R2, we found that the simpler Model L was preferred over Model
N for 133 out of 136 participants. A Bayesian analysis with
uninformative priors would produce results that favor Model L still
more (see Wagenmakers & Grünwald, 2006, for an illustration).

Even though this result speaks against the use of the power
function as a relationship between mean and standard deviation,
we briefly analyzed the parameter estimates from those functions.
Recall that a parameter of c � 1 indicates a linear mean–standard
deviation relationship and a parameter of c � 0.5 indicates an
(approximately) linear mean–variance relationship. We observed
parameter estimates of c � 1 more often than we observed c  1
(92 vs. 44 participants, respectively), but the results were not
overwhelming. Overall, these curve-fitting results indicate that
Model L is to be preferred over the more complex Model N.

A Diffusion Model Account of the Linear Relation
Between Mean and Standard Deviation

From a theoretical perspective, the relation between RT mean
and RT spread has recently been explored using Ratcliff’s Wiener
diffusion model (e.g., Ratcliff, 1978, 2002). The diffusion model is
a sequential sampling model in which noisy evidence is accumu-
lated over time until a prespecified evidence threshold is reached.
Figure 3 illustrates the model as applied to the lexical decision task
(e.g., Ratcliff, Gomez, & McKoon, 2004; Wagenmakers, Ratcliff,
Gomez, & McKoon, in press). The model assumes that the total
RT for a particular trial is the sum of a nondecision component of
processing (e.g., stimulus encoding and response execution) and a
decision component of processing: RT � Nondecision compo-
nent � decision component.

For our purposes, the nondecision component of processing is
assumed to be fixed at some value, Ter. The decision component of
processing is modeled as a continuous random walk (i.e., diffu-
sion) process. The decision process begins at a starting point z in
between the response threshold for the “word” and the “nonword”
response. A noisy information accumulation process then drives
the decision process until it reaches one of the two response
boundaries, after which the corresponding response is initiated.
Figure 3 shows two example processes that both reach the “word”
threshold. The distance between the response boundaries a is a
measure for response caution: When the boundaries are set close
together, RT will be fast, but, because of the impact of chance
fluctuations in the decision process, response accuracy will be low.

Table 3
Comparison of Linearity of the Relationship Between Mean and Standard Deviation With Mean
Versus Variance and Mean Versus Interquartile Range (IQR)

Data set

Standard deviation is more linear Mean correlation

Variance IQR SD Variance IQR

AbsID 5/9 7/9 .920 .914 .904
C1 4/4 3/4 .894 .821 .873
C2 4/4 4/4 .887 .834 .862
C3 5/5 5/5 .894 .817 .862
M1 24/24 19/24 .870 .799 .835
M2 17/19 14/19 .852 .814 .816
A1 17/21 17/21 .818 .793 .778
V1 20/24 19/24 .899 .885 .875
V2 8/10 10/10 .846 .828 .785
V3 11/16 15/16 .882 .862 .836
Total 115/136 113/136 .870 .835 .836

Note. Letter and number combinations for data set names refer to type of task and data set number. AbsID �
absolute identification; C � counting; M � mental arithmetic; A � alphabetic arithmetic; V � visual search.
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In Ratcliff’s diffusion model, task difficulty is quantified by
drift rate v, which is defined on the real line; v  0 and v � 0 lead
to evidence accumulation consistent with the “word” and “non-
word” response, respectively. When the absolute value of v is high,
the impact of chance fluctuations is low, resulting in fast and
accurate decisions. Parameter s is a scaling parameter that quan-
tifies the stochastic, nonsystematic component of the information-
accumulation process on each trial.

Wagenmakers et al. (2005) studied the predictions of the Rat-
cliff diffusion model with respect to the relation between RT mean
and RT variance. The usual Ratcliff diffusion model includes some
extra complications (between-trial variability in three parameters).
However, to facilitate the mathematical derivation, a simplified
(“EZ”) version of the diffusion model was used that corresponds
exactly to the above description, with the starting point always in
the middle of the response boundaries (i.e., z � a / 2; cf. Wagen-
makers, van der Maas, & Grasman, in press). In the simplified
diffusion model, the mean decision time (MDT) is given by

MDT � � a

2v�1 � exp�y	

1 � exp�y)
, (1)

where y � –va / s2. The variance of the decision time (VDT) is
given by

VDT � 	 � a

2v��s2

v2�2y exp�y	 � exp�2y	 � 1

�exp�y	 � 1	2

if v � 0

a4

24s4

if v � 0 ,

(2)

from which it follows that the relation between MDT and VDT is
given by

VDT � 	 MDT � � s2

v2�exp�2y	 � 2y exp�y	 � 1

exp�2y	 � 1

if v � 0

MDT �
a2

6s2

if v � 0 .

(3)

Figure 4 plots the standard deviation of decision time (i.e., �VDT)
against MDT. Each of the six lines corresponds to a different level
of boundary separation a; each separate line was constructed by
varying drift rate v. The values for a (i.e., a�[0.07, 0.17]) and v
(i.e., v�[0.1, 0.5]) were chosen to be representative ofvalues en-
countered in past research with the model (cf. Wagenmakers van
der Maas, & Grasman, in press, Figure 2).

As is evident from Equation 3 and Figure 4, the diffusion model
predicts that a manipulation of task difficulty (i.e., drift rate)
should result in an approximately linear relation between RT mean
and RT standard deviation (Wagenmakers et al., 2005).2 This
prediction from the diffusion model has consequences for a large
number of models and tasks. For instance, Logan (2002) proposed
the instance theory of attention and memory (ITAM), which inte-
grates formal theories of attention, memory, and categorization. In
ITAM, the preferred decision rule is instantiated by the random
walk model (Logan, 2002, p. 393). As the random walk model is
the discrete version of the diffusion model, the result of the above

2 It is possible for a decrease in boundary separation to compensate for
an increase in drift rate in such a way that response accuracy remains
constant. This change in boundary separation leaves the approximately
linear relation between RT mean and RT standard deviation intact (anal-
yses not shown here for reasons of brevity).

Figure 3. Ratcliff’s (1978) diffusion model for the lexical decision task. See text for details. RT � response time.
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analysis has the potential to carry over to ITAM and the tasks and
models with which ITAM is associated.

An Instance Theory Account of the Linear Relation
Between Mean and Standard Deviation

Another theoretical perspective on the linear relation between
RT mean and RT standard deviation is provided by the instance
theory of automatization (ITA; Compton & Logan, 1991; Lassal-
ine & Logan, 1993; Logan, 1988, 1990, 1992, 1998; Logan &
Klapp, 1991). The ITA accounts for the effects of practice in terms
of memory storage and retrieval. The ITA assumes that, at first,
performance on a given task is based exclusively on the speed with
which an algorithm is carried out (e.g., solving 3 � 5 by counting
on one’s fingers). With practice, performance becomes more based
on retrieval of the correct answer (i.e., cuing memory with “3 � 5”
and retrieving “8”). Performance is said to be automatic when it is
based on memory retrieval instead of the execution of an algo-
rithm.

According to the ITA, each encounter with a stimulus results in
the storage of a separate memory trace (i.e., an instance). When the
same stimulus is presented again in the same task context, all
corresponding memory traces race to be retrieved. Each memory
trace races independently of the other traces. A response is exe-
cuted when the first memory trace is retrieved, provided that such
retrieval occurs before completion of the algorithm. The more
memory traces participate in the race for retrieval, the sooner the
first memory trace tends to be retrieved and so the faster the
response tends to be. This is the mechanism by which the ITA
accounts for the speedup of RT with practice.

According to the ITA, it is not just mean RT that speeds up with
practice but it is the entire RT distribution that speeds up. In the
model, the distribution of RTs is the distribution of the minimum
of n memory traces racing for retrieval. It can be shown that under

fairly general conditions, the distribution of the minimum tends
toward a Weibull distribution as n increases (cf. Cousineau, Good-
man, & Shiffrin, 2002; for a discussion, see Colonius, 1995;
Logan, 1995). With practice (i.e., as n increases), the mean and
standard deviation of this distribution decrease at the same rate
(Logan, 1988). This means that the ITA predicts a linear relation
between RT mean and the RT standard deviation as a function of
practice. Elements of this prediction were extensively tested and
validated by Logan (1992).

Span of the Linear Law

The linear relationship between RT mean and RT standard
deviation does not hold under all circumstances; just as other laws
of RT (e.g., Fitts’s law and the Hick–Hyman law), it is subject to
boundary conditions. As it happens, these boundary conditions are
in perfect agreement with Ratcliff’s (1978) diffusion model.

Boundary Condition 1: Manipulations of Nondecision
Time

In the Ratcliff diffusion model, the linear relation between RT
mean and RT standard deviation comes about through a systematic
variation of task difficulty (i.e., drift rate). When parameters other
than drift rate vary across conditions or participants, the diffusion
model does not necessarily predict a linear relation between RT
mean and RT standard deviation. For instance, variation in re-
sponse conservativeness (i.e., boundary separation) does not lead
to the linear law (Wagenmakers et al., 2005).

In the context of a model for the psychological refractory period,
Sigman and Dehaene (2005, 2006) recently showed

that the perceptual transformation of sensory information . . . can be
carried out in parallel with another task and is a low-variability
process (whose variability does not increase with the mean); that the
accumulation of evidence establishes a bottleneck and is an intrinsi-
cally variable process; and that the execution of the response consti-
tutes yet another parallel, low-variability process. (Sigman & De-
haene, 2005, p. 344)

In terms of the diffusion model, the parallel processes associated
with perception and response execution together constitute the
nondecision component, whereas the serial bottleneck process
associated with the accumulation of evidence constitutes the de-
cision component of processing. With respect to the nondecision
time component in the diffusion model, one needs to distinguish
between within-trial and across-trial variability. The diffusion
model assumes that the within-trial variability of nondecision time
is zero; over the course of a single trial, the nondecision compo-
nent is not associated with a stochastic process. The nondecision
component does vary across trials, however. This variability, st,
does not depend on the mean, Ter, so that experimental manipu-
lations can affect Ter without affecting st. The results from Sigman
and Dehaene’s (2005) work strongly suggest that this is indeed the
case. It should further be noted that the across-trial variability in
the nondecision component of processing is a relatively recent
addition to the model; in many applications of the model to data,
the impact of st is not pronounced (cf. Ratcliff & Tuerlinckx,
2002).

Figure 4. Ratcliff’s (1978) diffusion model predicts an approximately
linear relation between the mean and standard deviation (both in seconds)
of decision time when task difficulty (i.e., drift rate) is varied from 0.10 to
0.5 in steps of 0.05 (adapted from Wagenmakers et al., 2005, Figure 3).
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Boundary Condition 2: Mixtures

The Ratcliff diffusion model assumes the presence of a single,
one-shot underlying cognitive decision process; the model does
not predict that the linear law holds when task performance is a
mixture of two or more different processes and the mixture pro-
portion changes over time. The model does predict that the linear
law holds within each separate mixture component. To illustrate
how mixtures can lead to a nonlinear relation between mean and
standard deviation, it is useful to consider an example involving
the component power law model (CMPL; Rickard, 1997, 1999,
2004; see also Delaney, Reder, Staszewski, & Ritter, 1998).

The CMPL theory proposes that in learning a new task, perfor-
mance is first based on a relatively slow algorithm. Later in
practice, performance is based on a fast retrieval strategy. The
execution of both the algorithm and the retrieval strategy speeds up
according to a power function. The CMPL theory predicts that as
participants gradually transition from the slow algorithm strategy
to the fast retrieval strategy, the RT mean decreases but the RT
standard deviation first increases and then decreases—this is due
to the fact that RTs are a mixture of two processes with different
speeds, and the variance of a mixture includes variability from
each component in addition to variability due to the difference
between the processes’ means. Under such a scenario, the relation
between RT mean and RT standard deviation need not be linear;
Figure 5 shows data reported in Rickard (2004) that clearly violate
linearity.3 Of course, our analyses suggest that when data are
separated by strategy (thus removing the mixture property), the
relationship between mean RT and standard deviation will, once
again, be linear.

Boundary Condition 3: Serial Processing

The third boundary condition on the linear law concerns mental
architectures in which processing is serial and exhaustive (for
details, see Townsend & Ashby, 1983, pp. 192–201). For example,

Sternberg (1966) used an item-recognition task in which partici-
pants were presented with short lists of items. After each list,
participants were given a probe item to which an “old” or a “new”
response was required, depending on whether the probe item was
a part of the previous list. Sternberg showed that the mean RT
increased linearly with the length of the to-be-remembered list,
suggesting that participants compare the list items with the probe
item one by one and that each comparison takes a fixed amount of
time. Moreover, the increase in mean RT with list length was the
same for lists that required an “old” response or a “new” response.
These findings suggested that processing in this memory-scanning
paradigm is serial and exhaustive (i.e., every item of the list is
compared with the probe item) rather than serial and self-
terminating (i.e., the comparison process stops after a match is
detected between the probe item and a list item).

When processing is serial and exhaustive, it can be shown that
under certain assumptions (e.g., independence of completion times
for the probe-to-item comparisons) the RT mean will increase
linearly with RT variance instead of with RT standard deviation
(Townsend & Ashby, 1983). This boundary condition is again
consistent with the Ratcliff diffusion model—recall that the diffu-
sion model is appropriate only in the presence of a single, one-shot
underlying cognitive decision process; the diffusion model is in-
appropriate in the presence of a process that is serial and exhaus-
tive.

The different predictions of the two models suggest that a test to
adjudicate between a serial exhaustive processing account and a
diffusion model account is to see whether RT mean is linear with
RT variance or with RT standard deviation. In the data sets under
consideration, serial exhaustive processing is a plausible explana-
tion of performance in the alphabet arithmetic task (A1) and in the
visual search tasks (V1, V2, and V3). In every one of these data
sets, well over half of the participants had more linear relationships
between RT mean and RT standard deviation than between RT
mean and RT variance. Across all four tasks, 56 out of 71 partic-
ipants showed a more linear relationship between RT mean and RT
standard deviation than between RT mean and RT variance. For
the data under consideration here, a diffusion account appears to be
more plausible than a serial exhaustive processing account.

Theoretical and Practical Implications

The linear relation between RT mean and RT standard deviation
as a function of task difficulty poses a constraint for the compu-
tational modeling of RT tasks. We have already shown that some
descriptive RT distributions are inconsistent with the linear law
(i.e., the shifted Wald distribution does not accommodate the linear
law, at least not through a change in a single parameter). The linear
constraint may also be of value for certain process models of RT.
Consider, for instance, the multiple read-out model for lexical
decision (Grainger & Jacobs, 1996). In lexical decision, task
difficulty is mediated in part by word frequency (cf. Ratcliff et al.,
2004; Wagenmakers, Ratcliff, et al., in press, for diffusion model
applications). Thus, the linear law predicts that as word frequency
increases, RT mean and RT standard deviation should decrease at
the same rate. It is presently unclear whether the multiple read-out

3 We thank Tim Rickard for sending us the data shown in Figure 5.

Figure 5. The nonlinear relation between response time (RT) mean and
RT standard deviation (both in milliseconds) in Rickard’s (2004) data.
Mean and standard deviation were first computed over items for each
participant and then averaged over participants.
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model produces this result. A similar implication holds for abso-
lute identification models. Our detailed analyses of Brown et al.’s
(2006) absolute identification data indicated that the relationship
between mean RT and standard deviation RT was strongly linear
in that paradigm. This linear relationship held over a wide variety
of conditions, including changes in stimulus magnitude, changes in
the size of the comparison set, and changes in task instructions
given to participants. This result represents a challenge for models
of absolute identification: It is unclear whether any of the current
models can accommodate the linear relationship.

The linear law also corroborates a number of analysis tech-
niques that implicitly assume a linear relation between RT mean
and RT standard deviation. For instance, researchers in the field of
aging are sometimes interested in the effects of variability after
controlling for differences in mean performance (e.g., Hultsch et
al., 2002; Li, 2002; MacDonald et al., 2003; Shammi et al., 1998).
One method is to use a linear regression technique to partial out
effects of differences in RT mean on the observed differences in
RT standard deviation. Another method to control for baseline
differences in processing speed is to use the coefficient of variation
(i.e., standard deviation divided by the mean; e.g., Segalowitz &
Segalowitz, 1993). These methods are only appropriate when the
relation between RT mean and RT standard deviation is linear.

In psycholinguistics, the coefficient of variation has also been
used to assess whether a practice-induced increase in language
proficiency and lexical access is due to a simple speedup or a
restructuring of the cognitive processes involved (e.g., Segalowitz
& Frenkiel-Fishman, 2005; Segalowitz & Segalowitz, 1993). Ac-
cording to Segalowitz and colleagues (Segalowitz & Frenkiel-
Fishman, 2005; Segalowitz & Segalowitz, 1993), a simple speedup
is associated with a constant coefficient of variation (i.e., mean and
standard deviation decrease at the same rate). When the coefficient
of variation differs between participants or practice sessions, this is
supposedly indicative of a shift toward a cognitively more efficient
mode of processing. This idea is similar to that of Rickard’s (1997)
CMPL theory. Again, the linear law is consistent with this line of
reasoning.

Concluding Comments

We have shown that RT standard deviation is close to linear in
mean RT for each individual participant, across a range of exper-
imental tasks in memory, perception, categorization, and problem
solving. The generality of this result is surprisingly strong: Nearly
three quarters of participants had a correlation between mean and
standard deviation of greater than .85. This strong empirical reg-
ularity can be considered a law of RT, like the law of practice (see
Heathcote et al., 2000). Such laws can inform theory develop-
ment—for example, Wagenmakers et al.’s (2005) results combine
with our current results to provide support for Ratcliff’s (1978)
Wiener diffusion model and for the use of the random walk
decision rule in Logan’s ITAM model for attention, memory, and
categorization (Logan, 2002). Other models of RT should also be
analyzed to see whether they support the observed linear relation-
ship between RT mean and standard deviation.
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Appendix A

Details of the Descriptive Response Time (RT) Distributions

Take the most commonly used descriptive distributions for RT
analysis: the ex-Gaussian, the shifted lognormal, the shifted Wald,
the shifted Weibull, and the Gumbel (e.g., Heathcote, Brown, &
Cousineau, 2004). For each of these distributions, we consider the
relation between mean and standard deviation as a function of its
parameters.

Ex-Gaussian

The three parameters of the ex-Gaussian distribution are the
mean (�) and standard deviation (�) of the normal component and
the mean (�) of the exponential component. The mean of the
ex-Gaussian distribution is � � �, and its standard deviation is
��2 � �2, so as long as �  �, changes in � will lead to a linear
relationship between mean and standard deviation. This analysis
suggests that � should play the role of representing task difficulty
in the ex-Gaussian distribution, a conclusion that prior analyses
have supported (cf. Spieler, Balota, & Faust, 2000, p. 519). The
use of � to represent task difficulty also agrees with Hohle’s (1965)
original motivation for developing the ex-Gaussian distribution, in
which the exponential component (indexed by �) was intended to
represent the decision processing time (cf. Christie & Luce, 1956).

Shifted Lognormal

The shifted lognormal distribution has two parameters repre-
senting the mean of the underlying normal distribution (mean �
and standard deviation �) as well as a shift parameter 
. The mean

of the shifted lognormal distribution is 
 � exp�� �
1

2
�2� ,

and the standard deviation is given by �exp�2� � �2	
� �exp��2	 � 1	�1/ 2. The logarithmic nature of the parameters in
this distribution produces linear relationships: Changes in � will
always lead to linearity of the mean versus standard deviation.
Changes in � will also lead to linearity, as long as � is larger than
about 2, which ensures that �exp��2	 � 1	 
 exp��2	 to a
reasonable approximation.

Shifted Wald

The shifted Wald distribution represents the density of first
passage times of a drifting Brownian motion process through a
single absorbing barrier, along with a positive offset. The param-
eters of the distribution are the drift rate of the process (�), the
separation between the starting point of the motion and the barrier
(a), and the shift value (
). The mean of the resulting distribution
is given by 
 � a / � and the standard deviation is given by �a/�3.
If one treats the � as indexing task difficulty, then the relationship
between mean and standard deviation is not linear: The standard
deviation is then close to linear in the mean raised to the power of
1.5. If one treats a as indexing task difficulty, then again the
relationship is nonlinear: The standard deviation is linear in the
square root of the mean RT.

Shifted Weibull

The shifted Weibull distribution is a power transformation of an
exponential distribution and arises as one of the three extreme
value distributions (for applications to psychology, see Chessa &
Murre, 2006; Logan, 1988, 1992; see also Cousineau et al., 2002).
This distribution has a shift parameter (
), a parameter for the
mean of the underlying exponential distribution (�), and a power
transformation parameter (c). The mean of the shifted Weibull
distribution is given by 
 � ���c�1�1), and the standard devi-
ation is given by �[�(2c�1 � 1) � �2(c�1 � 1)]1/2 , where �
represents the incomplete gamma function. If the mean of the
underlying exponential distribution (�) represents task difficulty,
then the relationship between mean and standard deviation is
perfectly linear, neglecting the effects of the shift parameter (
).

Gumbel

The Gumbel distribution is another extreme value distribution,
with only two parameters: a location parameter (�) and a scale
parameter (�). The mean of the Gumbel distribution is given by
� � 0.578�, and the standard deviation is given by ��/�6.
Therefore, task difficulty must be indexed by the � parameter for
a perfectly linear relationship between mean and standard devia-
tion.

Appendix B

Description of Experiments

In addition to the absolute identification experiment, we examined
nine sets of data; collectively, the data represent 2,452 experimental
conditions from 127 participants. Each data set was given an acronym
used to index the summaries of results (see Table 2). The following
sections describe both the paradigms from which the data were drawn
and the experimental factors used to produce separate series for each
data set. The data sets are freely available online at http://
www.newcastle.edu.au/school/psychology/ncl/data_repository.html.

Counting

In the counting tasks, participants were shown different patterns of
6 to 11 dots and a spelled-out number; they were asked verify whether
the number of dots in the pattern matched the spelled-out number. All
data were taken from Palmeri (1997). Each experiment used a number
of unique patterns, and fits included series from each pattern. Fits used
data broken down by participants and dot pattern. The data in set C1
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are the training series from Experiment 1. The number of dots was
manipulated within-subjects. There were 30 patterns with 5 patterns
of array size. The data in set C2 are the training series from Experi-
ment 2. The number of dots and the similarity of dot patterns were
manipulated within-subjects. There were 72 patterns with 4 patterns
for each level of similarity per array size. The data in set C3 are the
training series from Experiment 3. The number of the dots and
similarity were manipulated within-subjects. There were 72 patterns
with 6 patterns for each level of similarity at each array size.

Mental Arithmetic

The mental arithmetic tasks included a diverse set of problem
types. The data in set M1 are from a single-digit multiplication task
taken from Experiment 1 of Rickard and Bourne (1996). Either the
participants were shown two digits and asked to calculate the
product or they were shown a digit and a product and asked to
divide the product to compute the dividend. Response time (RT)
was recorded as the time between the presentation of the problem
and the keystroke of the first digit of the answer. There were 16
problem examples. Problem type (compute product or compute
dividend) and range of digits was manipulated within-subjects.
The data in set M2 are from a three-step arithmetic task (Experi-
ment 1 of Rickard, 1997). Participants were shown two numbers
and asked to calculate their difference, to add 1 to the result, and,
then, replacing one of the numbers with the result so far, to
compute the sum of it with the remaining original number. RT was
recorded as the time between the presentation of the problem and
the keystroke of the first digit of the answer.

Alphabetic Arithmetic

The data in set A1 are from Experiment 2 of Rickard (1997), in
which participants were required to verify equations of the form

A � 2 � C or A � 3 � C (true and false equations), respectively.
We broke down the data by participants and by problem example.
Two factors were manipulated within-subjects: addend (3, 5, and
7) and trial type (true–false), with four examples of each type.

Visual Search

In the visual search tasks, participants were required to indicate
whether a target appeared in a visual display. In V1 and V3, the
target was defined by the relative position of two features; in V2,
the target was defined by a conjunction of colors. Stimuli used for
targets and distractors were consistently mapped over trials in V1
and V2. Targets and distractors were variably mapped in V3, and
a target cue was given before each trial. Data in set V1 are from
Experiment 1 of Heathcote and Mewhort (1993). Two factors were
manipulated between-subjects: feature type (brightness or color)
and display area (small or large). Two factors were manipulated
within-subjects: display size (two, four, six, or eight objects) and
trial type (target–distractor). The data in set V2 are from Experi-
ment 3 of Carrasco, Ponte, Rechea, and Sampedro (1998). Two
factors were manipulated within-subject: display size (2, 6 or 10,
14, 18, 22 objects) and trial type (target–distractor). The data in set
V3 are from Experiment 3 of Heathcote and Mewhort (1993).
Three factors were manipulated within-subject: display size (two,
four, six, or eight objects), target type, and trial type (target–
distractor).
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