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a b s t r a c t

Cumulative prospect theory (CPT Tversky & Kahneman, 1992) has provided one of the most influential
accounts of how people make decisions under risk. CPT is a formal model with parameters that quantify
psychological processes such as loss aversion, subjective values of gains and losses, and subjective
probabilities. In practical applications of CPT, themodel’s parameters are usually estimated using a single-
participant maximum likelihood approach. The present study shows the advantages of an alternative,
hierarchical Bayesian parameter estimation procedure. Performance of the procedure is illustrated with a
parameter recovery study and application to a real data set. The work reveals that without particular
constraints on the parameter space, CPT can produce loss aversion without the parameter that has
traditionally been associated with loss aversion. In general, the results illustrate that inferences about
people’s decision processes can crucially depend on the method used to estimate model parameters.

© 2010 Elsevier Inc. All rights reserved.
1. Hierarchical Bayesian parameter estimation for cumulative
prospect theory

Should I cross the road now or wait until that oncoming car has
passed? Should I buy ahouse or rent an apartment? Should I sellmy
shares, await market developments, or perhaps buy more shares?
The consequences of real-life decisions are often unpredictable and
risky, and the study of how people make decisions under risk is a
central topic in psychology and economics.

The standard approach for studying decision making under
risk is to let people choose between gambles. Each gamble leads
to different monetary outcomes xi that occur with probability
pi. For instance, a participant might be given a choice between
two options: gamble A, which yields $100 with probability .6 and
−$100 with .4 (typically written as [$100, .6; −$100, .4]); and
gamble B, which yields −$10 with probability .5 and $0 with
probability .5 (i.e., [−$10, .5; $0, .5]). How do people make choices
between such gambles? The economic view of rational decision
making assumes that when choosing between risky options such
as gambles, people simply prefer the option that maximizes the
expected utility (e.g., Savage, 1954; Von Neumann &Morgenstern,
1947). In the above example,Homo economicus could calculate that
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the expected payoff equals $20 for gamble A and −$5 for gamble
B. Hence, gamble A is clearly more attractive than gamble B.1

The expected utility perspective on human decision making
has been challenged by a substantial body of psychological
research. This research inspired a variety of alternative accounts,
including regret and disappointment theory (Bell, 1982, 1985;
Loomes & Sugden, 1982), the priority heuristic (Brandstätter,
Gigerenzer, & Hertwig, 2006), the transfer-of-attention exchange
model (Birnbaum, 2008; Birnbaum & Chavez, 1997), the decision
field theory (Busemeyer & Townsend, 1993; Roe, Busemeyer, &
Townsend, 2001), theweighted utility theory (e.g. Fishburn, 1983),
the proportional difference model (González-Vallejo, 2002), the
decision affect theory (Mellers, 2000), the dual system model of
preference under risk (Mukherjee, 2010), and the rank-dependent
expected utility theories (e.g., Quiggin, 1982; for a summary of
alternatives to expected utility see Camerer, 1989; Machina, 1989;
Rieskamp, Busemeyer, & Mellers, 2006; Starmer, 2000).

Here we focus on the by far the most influential alternative
to expected utility: prospect theory (Kahneman & Tversky, 1979;
Tversky & Kahneman, 1992). Prospect theory suggests that people
put subjective weights on values and probabilities and that people
weight values and probabilities associated with positive outcomes
(i.e., gains) differently from those associated with negative
outcomes (i.e., losses). Prospect theory successfully accounts for a
number of systematic deviations from expected utility, such as the

1 This example assumes thatmoneyhas a linear utility. An arguablymore realistic
example will be provided later.
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finding that people are risk-averse for gains of high probability but
risk-seeking for gains of low probability, and that people are risk-
seeking for losses of high probability but risk-averse for losses of
low probability (the so-called fourfold pattern of risk; e.g., Tversky
& Kahneman, 1992).

Prospect theory has been instantiated as a formalmathematical
model, featuring several parameters that isolate and quantify
psychological concepts such as loss aversion, subjective value
functions for gains and losses, and probability weighting functions.
Despite the prominence of prospect theory as an account of how
people make decisions under risk, little work has addressed how
to estimate themodel’s parameters. Themost common approach is
single-subjectmaximum likelihood estimation (MLE; e.g., Harrison
&Rutström, 2009; Harless & Camerer, 1994; Rieskamp, 2008; Stott,
2006; for a tutorial see Myung, 2003). In general, single-subject
MLE is consistent and efficient as the number of observations per
participant grows large. One drawback of single-subject MLE is
that it treats participants as if they were completely independent.
Often, though, it ismore reasonable to assume that participants are
similar to each other, such that their individual parameter values
originate from a group-level distribution. This way, parameter
estimation for a single participant could be assisted by information
obtained from all other participants. Another drawback of single-
subject MLE is that it is almost always used to obtain only point
estimates for each subject; these point estimates are then entered
in an analysis of variance to test for significant differences between
groups or conditions. This procedure ignores the precision with
which the participant parameters are estimated. Aswewill discuss
later, some parameters in cumulative prospect theory tend to
be estimated with relatively high uncertainty, and for these
parameters single-subject maximum likelihood point estimates
may be extreme and unrealistic.

In the present article we propose a hierarchical Bayesian
parameter estimation procedure for cumulative prospect theory
that addresses the above limitations of MLE. Our estimation
procedure implements a natural compromise between the two
extremes of complete independence (i.e., as in single-subject MLE)
and complete pooling (i.e., fitting averaged data and implicitly
assuming that all participants are identical). Moreover, the
Bayesian hierarchical procedure prevents inference from being
dominated by a few outlying point estimates — extreme results
will ‘‘shrink’’ towards the group mean, a phenomenon that is
more pronounced for parameters that are estimated with much
uncertainty. Our Bayesian estimation routine is implemented
in WinBUGS (Lunn, Thomas, Best, & Spiegelhalter, 2000; Lunn,
Spiegelhalter, Thomas, & Best, 2009), making it easy for other
researchers to apply and adjust.

The outline of this article is as follows. The first section briefly
outlines the mathematical and conceptual basis that underlies
cumulative prospect theory. The second section critically reviews
the present approaches for estimating cumulative prospect theory
parameters, and the third section introduces our hierarchical
Bayesian estimation procedure for cumulative prospect theory.
The fourth section contains a parameter recovery study that
features both single-subject MLE and our Bayesian hierarchical
method. The fifth section applies these two estimation techniques
to experimental data drawn from Rieskamp (2008).

2. Cumulative prospect theory

Prospect theory (Kahneman & Tversky, 1979) was formulated
as a reaction to the growing evidence that people do not follow
the norms of economic expected utility maximizing (for reviews
see Rieskamp et al., 2006; Schoemaker, 1982; Starmer, 2000).
Classic economic theory states that when people choose between
options with risky outcomes they will choose the option that
maximizes their expected utility. The expected utility (EU) of an
option O is defined by

EU(O) =

−
piu(xi), (1)

where u(·) is a utility function that defines the subjective utility of
xi. The subjective utility of xi is weighted by the probability with
which outcome i occurs.

Imagine a choice between the two gambles introduced above,
[$100, .6; −$100, .4] (gamble A) and [−$10, .5; $0, .5] (gamble B).
Assume that u(·) is a power function so that EU(O) =

∑
pi(xi)α

and that α = .5, then the expected utility of gamble A equals 2 and
the expected utility of gamble B equals −1.6. In this case, utility
maximization implies choosing gamble A over gamble B.

Prospect theory follows EU theory by assuming that it is
possible to assign to each option a subjective value that represents
its desirability to the decision maker. However, prospect theory
differs from EU theory in the way the subjective value is
determined. First, prospect theory assumes that the outcomes of
risky options are evaluated relative to a reference point, such
that the outcomes can be framed in terms of losses and gains.
When comparing losses against gains it is further assumed that
the absolute value of a loss has a larger impact on a decision
than the same value of a gain (e.g., ‘‘losses loom larger than
gains’’, Kahneman & Tversky, 1979, p. 279), a phenomenon known
as loss aversion. In other words, losing $25 is worse than
winning $25 is good. Second, prospect theory assumes that
people have a subjective representation of probabilities, such
that small probabilities are overestimated and medium and large
probabilities are underestimated. Cumulative prospect theory
(Tversky & Kahneman, 1992) suggests a refined version of the
original prospect theory (Kahneman & Tversky, 1979). Hereafter,
we will write CPT when we discuss the model and cumulative
prospect theory when we discuss the theory behind the model.

According to CPT, if prospect O has two possible outcomes, as
all prospects discussed in this paper, then the subjective value V of
O can be determined by

V (O) =

−
π(pi)v(xi), (2)

where π (·) is a weighting function of the objective probabilities
and v(·) is a function defining the subjective value of outcome i.
It is assumed that both the probability weighting function and the
value function differ for gains and losses.

The subjective value of payoff x is defined as

v(x) =


xα, if x ≥ 0
−λ(−x)β , if x < 0, (3)

where α and β are free parameters that vary between 0 and 1
and modulate the curvature of the subjective value functions (the
weighting functions for gains and losses will be different as long
as α ≠ β). The λ parameter specifies loss aversion, with larger
values expressing larger loss aversion. Cumulative prospect theory
assumes that losses carry more weight than gains so that one
could restrict λ to be larger than 1. However, in order to test the
loss aversion assumption of prospect theory one can allow values
for λ to be smaller than 1 (but larger than 0). For computational
simplicity λ should be further constrained to a maximum large
value (e.g., λ < 10). A person with a value of λ < 1 will show the
opposite of loss aversion. That is, the personwill give larger weight
to gains than to losses of the same absolute value.

The two most notable aspects of the value function defined in
Eq. (3) is that, as long asα andβ are neither 0 nor 1 and λ > 1, then
(i) the difference between x and x plus $1 (and between −x and
−x minus $1) will be perceived as greater when payoffs are close
to 0 than when payoffs are distant from 0 and (ii) the difference
between −x and −x minus $1 will be perceived as larger than the
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Fig. 1. (A) Two value functions (thick dotted line: α = .88, β = .88, and λ = 2.25; thin dotted line: α = .5, β = .5, and λ = 5) and (B) two probability functions (thick
dotted line: c = .69; thin dotted line: c = .5) generated by CPT.
difference between x and x plus $1. This is illustrated in Fig. 1(A),
which displays two separate value functions. The thick dotted line
shows a value function with α = .88, β = .88, and λ = 2.25 and
the thin dotted line shows a value function with α = .5, β = .5,
and λ = 5 (the former function uses the median values from
the individual fits in Tversky & Kahneman, 1992). As can be seen,
a lower value on α and β is associated with a faster decrease in
marginal utility and a higher value on λ is associated with stronger
loss aversion.

Probabilities are transformed by a weighting function. In the
case of only two possible outcomes (as for all options considered
in the present article) the weighting function can be reduced to

π(pi) =
pci

(pci − [1 − pci ])1/c
(4)

with c = γ for positive payoffs and c = δ for negative payoffs.
Parameter c , which can take values between 0 and 1, specifies the
inverse s-shaped transformation of the weighting function.

Fig. 1(B) shows two probability functions. The thick dotted line
represents a casewhere c = .69 and the thin dotted line represents
a case where c = .5. As long as c < 1, low probabilities are over-
estimated and high probabilities are underestimated and the
subjective difference between p and p plus .01 is larger if p is
an extreme probability than if p is a moderate probability. The
magnitude of these effects increases as the value of c decreases.

Imagine, once again, a choice between gambles A ([$100, .6;
−$100, .4]) and B ([−$10, .5; $0, .5]) presented above. Assume
a CPT equipped with the median parameter values from the
individual fits in Tversky and Kahneman (1992, i.e., α = .88,
β = .88, λ = 2.25, γ = .61, and δ = .69). According to Eq. (3),
the subjective value of $100 equals 57.54 and the subjective value
of −$100 equals −129.47. According to Eq. (4), the subjective
probability of .6 equals .47 and the subjective probability of .4
equals .39. Finally the subjective value of gamble A, derived from
Eq. (2), equals −23.45. In the same way it can be calculated
that the subjective value of gamble B equals −7.75. Hence, in
contrast to the suggestion by the gambles’ expected values and
the EU model exemplified above, CPT equipped with the median
parameter provided by Tversky and Kahneman (1992) states that
gamble B should be chosen over gamble A. Note that it is essentially
loss aversion that causes CPT to choose differently than the EU
model.

The original version of CPT is deterministic. That is, the decision
maker should always choose the options with the larger subjective
value. However, to account for the probabilistic nature of human
choice behavior it is essential to add an error theory to the model.
By doing so, the model predicts the choice of an option with a
specific probability. There are various ways that such an error
theory can be specified. The simplest way is to use a choice rule
where the choice probabilities are assumed to be a monotonic
function of the differences of the gambles’ subjective values. A
range of probabilistic choice rules have been used (for a summary
see Stott, 2006).Wewill use an exponential Luce choice rule,which
states that the probability of choosing optionA over option B equals

p(A, B) =
eϕ·V (A)

eϕ·V (A) + eϕ·V (B)
, (5)

where ϕ > 0 is a sensitivity parameter that quantifies the extent
to which the model’s choice is determined by the difference in
subjective values for options A and B. For computational stability it
is often useful to rewrite Eq. (5) as a logistic choice rule,

p(A, B) =
1

1 + eϕ[V (B)−V (A)]
. (6)

When the sensitivity parameter ϕ equals 0 choice behavior is
random, that is, p(A, B) = .5. As ϕ increases, choice behavior is
determined more and more by the difference in subjective value
for the two choice options. In the limit, as ϕ grows large, even a
very small difference in subjective values will result in a consistent
preference, such that the probabilistic version becomes virtually
identical to the deterministic version. Due to its prominence
we have selected the exponential choice rule for implementing
an error theory. However, it should be noticed that the choice
rule cannot explain violations of stochastic transitivity or of the
independence from irrelevant alternatives principle (c.f. Rieskamp
et al., 2006). Thus, we take the exponential choice rules as a
simplifying approximation. In sum, probabilistic CPT comprises the
following six free parameters:

1. Parameter α quantifies the curvature of the subjective value
function for gains;

2. Parameter β quantifies the curvature of the subjective value
function for losses;

3. Parameter λ quantifies loss aversion;
4. Parameter γ quantifies the shape of the probability weighting

function for gains;
5. Parameter δ quantifies the shape of the probability weighting

function for losses;
6. Parameter ϕ quantifies the extent to which choice behavior is

guided by subjective values.

3. Parameter estimation for cumulative prospect theory:
Present approaches

The parameters of CPT quantify the various cognitive processes
that are thought to drive decision making under risk. This means
that researchers can use CPT to assess the influence of categorical
predictors (e.g., different experimental conditions) or continuous
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predictors (e.g., age or income) not just on the level of observed
decisions, but also on the deeper level of unobserved psychological
processes. In order to do so, however, one needs to estimate
the parameters of CPT. Here we briefly discuss three popular
approaches to do so (see also Busemeyer &Diederich, 2009; Cohen,
Sanborn, & Shiffrin, 2008).

3.1. Approach 1: Obtain parameter estimates from previous studies

The simplest solution to the parameter estimation problem is
not to engage in parameter estimation at all, but instead rely on
estimates from previous studies. For instance, Benartzi and Thaler
(1995) explained the equity premium puzzle by assuming that
people are loss-averse. That is, people prefer bonds over stocks
because the potential short-term losses are larger for stocks than
for bonds. The authors illustrated the effect of loss aversion on
investments using the CPT parameter estimates from Tversky and
Kahneman (1992). In a different study, Brandstätter et al. (2006)
used the same set of parameters when they compared CPT to a
simple model of decision making, the (parameter free) ‘‘priority
heuristic’’.

One disadvantage of this approach is that the conclusions
are based on a specific set of parameter estimates — estimates
obtained in a specific decision task, with specific participants, at
a specific time, and in a specific context. The conclusions do not
necessarily generalize to different tasks and different participants.
For example, though the ability to explain behavior in the Allais
paradox is one of the key trademarks of the model, CPT produces
a choice behavior that is inconsistent with the behavior in the
Allais paradox if it is equipped with the parameter estimates
from Tversky and Kahneman (1992), see Nielson and Stowe
(2002). A second disadvantage of this approach is that it does not
allow researchers to use CPT as a measurement tool to quantify
changes in psychological processes as a function of categorical or
continuous covariates.

3.2. Approach 2: Complete pooling: Participants are identical

As its name suggests, the complete pooling approach first av-
erages the data across all participants, and then estimates the
model’s parameters for the averaged data. In other words, the re-
searcher effectively analyzes the data as if they were generated by
a single participant. The main advantage of the complete pooling
approach is that the aggregation procedure might sometimes re-
veal underlying patterns that are otherwise obscured by noise in
individual data. Therefore, the approach can be useful in situations
where the number of data per participant is low, that is when in-
dividual data can be assumed to be relatively noisy (Cohen et al.,
2008). A second advantage is that it is computationally straight-
forward to use maximum likelihood to estimate parameters based
on the aggregate behavior over participants.

Unfortunately, the approach comes with a serious drawback.
The complete pooling approach neglects the fact that participants
may differ. When participants differ, conclusions drawn from the
complete pooling approach are known to be potentially mislead-
ing. In particular, Estes and others have shown that individual dif-
ferences,when ignored, can induce averaging artifacts inwhich the
data that are averaged over participants are no longer representa-
tive for any of them (Estes, 1956, 2002; Heathcote, Brown, & Me-
whort, 2000). For example, consider a situation in which one half
of participants is risk-seekingwhereas the other half is risk-averse.
When CPT is fitted to the average data it may support the conclu-
sion that the participants are risk- neutral, a conclusion that is cor-
rect for none of the individual participants.
3.3. Approach 3: Complete independence: Participants are unique

The assumption that all participants are identical is clearly
unrealistic, and this is why many researchers now estimate
model parameters for each participant separately (e.g. Brown &
Heathcote, 2003; Estes & Maddox, 2005; Haider & Frensch, 2002).
This complete independence approach implicitly assumes that
each participant is unique. By considering each participant as a
separate unit of analysis, the complete independence approach
avoids the averaging artifacts that plague the complete pooling
approach, and allows for statistical inferences both for the entire
group and for individual participants.

The main drawback of the complete independence approach
is that in standard experimental setups individual participants
contribute relatively few data. Consequently, individual parameter
estimates are relatively noisy and unreliable. Below we will
illustrate how single-subject maximum likelihood, one of themost
popular estimation methods for CPT (e.g. Harrison & Rutström,
2009; Harless & Camerer, 1994; Stott, 2006), can produce extreme,
implausible point estimates for parameters estimated with high
uncertainty.

In sum, fundamental problems are associated with all current
methods to estimate parameters in CPT. The complete pooling
model, although robust, may lead to averaging artifacts —
participants are not identical. The complete independence model,
although it avoids averaging artifact, may lead to noisy and
extreme parameter estimates — the price that has to be paid for
assuming that each participant is unique.

4. Hierarchical Bayesian parameter estimation

Hierarchicalmodeling constitutes an attractive compromise be-
tween the extremes of complete pooling and complete indepen-
dence (Gelman & Hill, 2007; Shiffrin, Lee, Kim, & Wagenmakers,
2008). In a hierarchical model, individual parameter estimates are
assumed to come from a group-level distribution, often a normal
distribution with estimated mean and standard deviation. When
the group-level standard deviation is estimated to be very small,
this indicates that the individual participants behave similarly,
consistent with the assumption of the complete pooling approach;
but when the group-level standard deviation is estimated to be
very large, this indicates that the individual participants behave
differently, consistent with the assumption of the complete inde-
pendence model.

Note that as in the complete independence approach, hier-
archical models also estimate parameters for each individual
participant; these parameters, however, are constrained by the
higher-level group distribution. This group-level constraint allows
the potentially unreliable estimation of a particular individual’s pa-
rameter to borrow strength from the information that is available
about the other individuals.

Thus, hierarchical models simultaneously account for both dif-
ferences and similarities between people (e.g. Morey, Pratte, &
Rouder, 2008; Morey, Rouder, & Speckman, 2008; Navarro, Grif-
fiths, Steyvers, & Lee, 2006; Wetzels, Vandekerckhove, Tuerlinckx,
& Wagenmakers, 2010). Hierarchical models avoid the averaging
artifacts that come with the complete pooling approach, and also
avoid, at least to the extent possible, the unreliability that comes
with the estimation of parameters for individual participants. Nat-
urally, the benefits of hierarchical modeling depend on the ex-
tent to which the hierarchical structure is appropriate for the data
under scrutiny; for example, it would be ill-advised to assume a
group-level normal distributionwhen individual participants clus-
ter in two or three separate subgroups (e.g., people who learn ver-
sus people who do not, e.g., Lee & Webb, 2005; Lee & Wetzels,
2010). Therefore, the kind of hierarchical structure that is imposed
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on the individual units should be informed by prior knowledge and
by exploratory data analysis.

In the following we present a hierarchical Bayesian parameter
estimation procedure for CPT. Although hierarchical analyses can
be carried out using orthodox methodology (i.e. Farrell & Ludwig,
2008; Hoffman & Rovine, 2007), there are philosophical and
practical reasons to prefer the Bayesian methodology (e.g. Gelman
& Hill, 2007; Lindley, 2000, respectively).

4.1. Application to cumulative prospect theory

We implemented a Bayesian hierarchical estimation procedure
for CPT, as follows. First, recall that CPT has six parameters: α ∈

[0, 1], β ∈ [0, 1], λ ∈ (0, ∞), γ ∈ [0, 1], δ ∈ [0, 1], ϕ ∈ (0, ∞)
(as described below, we constrained the upper boundary of λ and
ϕ for the analyses in this paper). Parameter α(β) quantifies the
curvature of the subjective value function for gains (losses). As
long as α(β) is neither 0 nor 1, the difference between x and x
plus $1 (−x and −x minus $1) will be perceived as greater when
payoffs are close to 0 than when payoffs are distant from 0 (see
Fig. 1(A)). Parameter λ captures whether gains and losses carry an
equal amount of weight (λ = 1) or if relatively more weight is
put on either gains (λ < 1) or losses (λ > 1) (the latter producing
loss aversion, a key assumption of CPT). Parameter γ (δ) quanti-
fies the curvature of the probability weighting function for gains
(losses). As long as γ (δ) < 1, low probabilities are overestimated,
high probabilities are underestimated, and the subjective differ-
ence between p and p plus .01 is larger if p is an extreme probability
than if p is a moderate probability (see Fig. 1(B)). Parameter ϕ cap-
tures whether the choice behavior is random (low values on ϕ) or
guided by subjective values (high values on ϕ). Together, these six
parameters determine the probability that a decision maker will
prefer a certain gamble A over another gamble B (Eqs. (2)–(6)). In
the hierarchical Bayesian framework, we assumed that each deci-
sion maker or participant i has their own parameters: αi, βi, γi, δi,
λi, and ϕi.

Consider first all parameters that are constrained to be between
0 and 1, that is, αi, βi, γi, δi. In order to facilitate hierarchical mod-
eling, we followed Rouder and Lu (2005) and first transformed
these parameters to the probit scale, that is, αϕ

i = Θ−1(αi), β
ϕ

i
= Θ−1(βi), γ

ϕ

i = Θ−1(γi), δ
ϕ

i = Θ−1(δi), where Θ−1 denotes the
inverse cumulative distribution function of the standard normal
distribution (see also Wagenmakers, Lodewyckx, Kuriyal, & Gras-
man, 2010). On the probit scale the parameters cover the entire
real line, and we assumed that the individual probitized parame-
ters come from independent group-level normal distributions, that
is, α

ϕ

i ∼ N(µα, σ α), β
ϕ

i ∼ N(µβ , σ β), γ
ϕ

i ∼ N(µγ , σ γ ), and
δ

ϕ

i ∼ N(µδ, σ δ). Note that the assumption of prior independence
does not mean that the parameters remain uncorrelated a poste-
riori. Alternatively, one can specify dependent group-level distri-
butions using a prior on the variance matrix (e.g. Klauer, 2010).
In Bayesian statistics, both approaches are common practice (e.g.
Ntzoufras, 2009; Rouder et al., 2007). Here we prefer to use the in-
dependence method because it is simpler to implement and easier
to communicate.

Finally, we assigned priors to the group-level parameters.
For the group means we used standard normal priors, as these
correspond to uniform priors on the rate scale: µα

∼ N(0, 1),
µβ

∼ N(0, 1), µγ
∼ N(0, 1), and µδ

∼ N(0, 1). For the group
standard deviations we used uninformative uniform priors (cf.
Gelman & Hill, 2007): σ α

∼ U(0, 10), σ β
∼ U(0, 10), σ γ

∼ U
(0, 10), and σ δ

∼ U(0, 10). Note that when the group standard
deviation is >3, the individual parameters are almost certainly
bimodal on the rate scale, something that we deem a priori
implausible.
The two remaining parameters are λi and ϕi. In principle, these
parameters can take on any positive value. We therefore assumed
that these parameters come from a lognormal distribution, λi ∼

LN(µλ, σ λ) and ϕi ∼ LN(µϕ, σ ϕ). Based on our experience with
CPT, we decided that for both parameters, the group mean
was certain to lie in an interval that ranges from 0.1 to
5. Assuming an uninformative uniform prior distribution for
the lognormal group means, this translates to the following
priors: µλ

∼ U(−2.30, 1.61) and µϕ
∼ U(−2.30, 1.61). Finally,

we assigned uninformative uniform priors for the lognormal
standard deviations σ λ and σ ϕ , ranging from 0 to 1.13; this latter
number (i.e., 3.91/

√
12) is the standard deviation of a uniform

distribution that ranges from −2.30 to 1.61. Given our prior
knowledge that plausible values are restricted to the interval
from 0.1 to 5 (i.e., −2.30 to 1.61 on the log scale), and that
the group-level distribution is unlikely to be bimodal, the value
1.13 represents a reasonable upper bound. Hence, the model
specification is completed by σ λ

∼ U(0, 1.13) and σ ϕ
∼ U(0,

1.13).
We implemented the hierarchical Bayesian model in WinBUGS

(Lunn et al., 2000, 2009), a free software program that comes with
preprogrammed distributions, functions, and MCMC algorithms.
Although the MCMC algorithms in WinBUGS may not be the
most efficient for any particular nonstandard application, a
model implemented in WinBUGS is easy for other researchers to
understand, apply, and adjust. TheWinBUGS code for our model is
available online.2

5. Study 1: Parameter recovery

The main goal of Study 1 was to confirm that the Bayesian
hierarchical estimation procedure is able to accurately recover
parameter values from data simulated under CPT. A secondary
goal was to compare the performance of the Bayesian hierar-
chical procedure with that of standard single-subject MLE (e.g.
Rieskamp, 2008).

To assess parameter recovery performance we used CPT to
generate three sets of choice data, each set containing 30 synthetic
subjects that completed an experiment featuring 60 pairs of mixed
gambles. Mixed gambles – gambles inwhich one possible outcome
is a loss and the other a gain – are required to estimate the loss
aversion parameter λ. The set of mixed gambles was taken from a
real experiment (Rieskamp, 2008, Study 2), in which the gambles
were randomly generated under the constraint that one gamble
never stochastically dominated the other gamble and that the
expected values of the two gambles were relatively similar, so that
the choices were not too easy.

To simulate the choice behavior using CPT, the generative
parameter values for each synthetic subject were set to the values
provided by Tversky and Kahneman (1992): α = .88, β = .88,
γ = .61, δ = .69, and λ = 2.25. To examine the effect of
noise on parameter recovery we used three different values for
the sensitivity parameter ϕ and used each value to generate a
separate data set. The three levels of ϕ were ϕ = .04 (high noise),
ϕ = .14 (medium noise), and ϕ = .40 (low noise); these values
were chosen so that average simulated choice behavior would
correspond to the deterministic prediction of CPT in 60%, 75%, and
90% of all choices, respectively. We refer to these three data sets as
D60, D75, and D90.

After the three data sets had been generated, the parameters of
CPT were estimated using both MLE and our hierarchical Bayesian

2 The model can be found under the heading Hierarchical Bayesian Parameter
Estimation for CPT at http://psycho.unibas.ch/datensaetze/abteilungen/economic-
psychology/supementary-materials/abteilung/economic-psychology/.

http://psycho.unibas.ch/datensaetze/abteilungen/economic-psychology/supementary-materials/abteilung/economic-psychology/
http://psycho.unibas.ch/datensaetze/abteilungen/economic-psychology/supementary-materials/abteilung/economic-psychology/
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method. For the latter method, posterior distributions were ap-
proximated by a total of 30,000 MCMC samples obtained from
three chains, after a burn-in of 1000 samples and after subsam-
pling such that only every tenth samplewas recorded (for an intro-
duction to Bayesianmodeling usingWinBugs see, Ntzoufras, 2009).
Convergence of the MCMC chains was confirmed by visual inspec-
tion and by computing the R̂ statistic (Gelman & Rubin, 1992).

5.1. Results and discussion

Table 1 summarizes the main results. For the maximum
likelihood method, Table 1 shows the median of the 30 MLE
point estimates across the synthetic participants. The standard
deviation (SD) is given in brackets and serves as an indication of
the variability of themedian. For the hierarchical Bayesianmethod,
Table 1 shows the median of 30 individual posterior modes (for
each synthetic subject, we considered the individual-level joint
posterior and estimated its joint mode). By reporting the median
of the modes of the individual-level posteriors (instead of, say, the
mode of the posterior for the group-level mean) we facilitate a
comparison between MLE and the hierarchical Bayesian method.

The upper rows of Table 1 – labeled ‘‘Maximum Likelihood’’
or ‘‘Hierarchical Bayesian’’ – show the parameter recovery results
for the full version of CPT, that is, the version in which all
parameters are free to vary. In general, the data-generating
parameters were recovered better as the noise in the choice
process decreased. However, evenwith large noise both estimation
methods recovered parameters α,β , γ , and δ with some tolerable
error. As expected, the individual point estimates from MLE tend
to have a larger variability (i.e., larger SD) than those from the
hierarchical Bayesian approach. The Bayesian approach also seems
to have an advantage in estimating the sensitivity parameter ϕ, a
parameter that MLE tends to overestimate.

There were, however, two unexpected results. First, λ was
significantly underestimated at all levels of noise, a tendency that
was more pronounced for MLE than for the Bayesian approach.
This is particularly troublesome because λ represents a key
psychological concept in prospect theory, namely, loss aversion.
The second unexpected result is that α was systematically
estimated to be lower than β .

It is likely that these results are caused by a peculiarity of
CPT, that is, its ability to account for loss aversion in multiple
ways. The most obvious way for CPT to account for loss aversion
is by parameter λ (after all, the purpose of λ is to measure loss
aversion). A second way, however, is to decrease the marginal
utility at a faster pace for gains than for losses. This occurs when
α is smaller than β . Based on this reasoning, we hypothesized
that the parameter estimation routines compensate for the
underestimation of λ by assigning lower values to α than to β; in
this way, CPT accounts for the existing loss aversion indirectly in a
manner that we had not anticipated.

To test our hypothesis we carried out a new set of analyses. In
this new set, we constrained CPT such that α and β were forced to
take on the same value. These results are presented in the lower
row of each cell in Table 1, labeled ‘‘α = β ’’. As can be seen from
the table, adding this restriction to the model greatly improved
the recovery of λ for both estimation methods (without affecting
the recovery of the other parameters). Most notably, in the case of
low noise (i.e., D90), the hierarchical Bayesian method recovered
parameter λ perfectly.

The improvement in recovery performance gained by con-
straining CPT is illustrated further by Fig. 2. Fig. 2 presents the pos-
terior distributions for the means of the group-level distributions
from the hierarchical Bayesianmethod (when CPT is fitted to D90).
Solid lines represent the posteriors from the full CPT, dotted lines
represent the posteriors from the restricted CPT, and the vertical
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Fig. 2. Posterior distributions for group-level means for the full version of CPT
(solid lines) and for the restricted version of CPT (dotted lines), applied to simulated
data (i.e., Study 1). Vertical lines represent the true values used to generate the data.

lines indicate the true data-generating parameter values. As can
be seen from the figure, the distributions for parameters α,β , γ ,
and δ are located near the true values for both the full CPT and the
restricted CPT. The reason the peaks of the posterior distributions
do not fall exactly on the target value is that there are some sys-
tematic patterns of the data generated by the error that the model
cannot separate. However, these deviationswould havemost likely
disappeared if we had used a larger data set.

The important aspect of Fig. 2 is the difference between full
and restricted CPT that is evident in the panel for the loss aversion
parameter λ. For the full CPT, the posterior for λ is relatively
wide and located almost entirely below the true data-generating
value; in contrast, for the restricted CPT the posterior for λ is
narrowly peaked and centered on the true data-generating value.
This supports our hypothesis that there is information in the data
that can be used to estimate λ, but that much of this information is
absorbedbyα andβ if these parameters are allowed to vary freely.3

From this simulation study, we conclude that the hierarchical
Bayesian method recovers the data-generating parameters values
somewhat more accurately than MLE, and with less variability.
This is particular evident for the sensitivity parameter ϕ. Recovery
performance for both the hierarchical Bayesian method and MLE
increases as the level of noise decreases. Finally, the initial
analysis revealed that the unrestricted, full CPT dramatically
underestimates loss aversion, for both the Bayesian method and
MLE. Instead, the full CPT can account for loss aversion by assigning
lower values to α than to β . This hypothesis was confirmed
by a second analysis in which a restricted (i.e., α = β) version
of CPT was able to accurately recover the loss aversion parameter
λ. This finding suggests that when researchers use CPT to analyze
real data, they should be careful to quantify loss aversion by λ from
the full model. Instead, it would be prudent to also fit the α = β-
restricted CPT, and, in case the restricted model still provides an
acceptable fit to the data, to quantify loss aversion by λ from the
restricted model.

3 CPT could also produce loss aversion by creating an asymmetry between γ and
δ. We fitted a CPT where α and β were allowed to vary freely but where γ = δ. This
constrained version of CPT was just as poor as the full version at recovering λ.
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Table 1
Median point estimate (maximum likelihood estimation) and median of the posterior mode (hierarchical Bayesian method) for each parameter for each generated data set.
Standard deviation enclosed in brackets.

Method Parameters
α (.88) β (.88) γ (.61) δ (.69) λ (2.25) ϕ

D60 — high noise, ϕ = .04
Maximum likelihood .88 (.36) 1.0 (.16) .49 (.36) .60 (.28) .31 (2.05) .23 (3.43)
α = β .93 (.23) .43 (.37) .60 (.24) .84 (1.33) .15 (3.65)
Hierarchical Bayesian .63 (.02) .99 (.00) .50 (.09) .61 (.07) .55 (.10) .12 (.00)
α = β .74 (.01) .50 (.36) .58 (.01) 1.50 (.12) .10 (.00)

D75 — medium noise, ϕ = .14
Maximum likelihood .90 (.23) .97 (.13) .58 (.26) .67 (.14) 1.48 (2.83) .20 (1.90)
α = β .86 (.11) .52 (.29) .68 (.14) 1.73 (1.25) .22 (2.44)
Hierarchical Bayesian .84 (.01) .99 (.00) .56 (.00) .71 (.01) .57 (.00) .18 (.01)
α = β .91 (.01) .59 (.01) .72 (.02) 2.42 (.05) .11 (.00)

D90 — low noise, ϕ = .40
Maximum likelihood .79 (.17) .87 (.09) .56 (.19) .66 (.09) 1.07 (2.41) 1.38 (2.56)
α = β .85 (.07) .57 (.21) .69 (.09) 1.72 (.81) .91 (2.43)
Hierarchical Bayesian .82 (.01) .88 (.00) .58 (.02) .73 (.01) 1.83 (.11) .60 (.06)
α = β .86 (.00) .55 (.04) .73 (.00) 2.25 (.06) .54 (.05)
6. Study 2: Application to behavioral data

The goal of Study 2 was to explore whether the conclusions
from simulated data (i.e., Study 1) generalize to real empirical data.
Here we analyze the data from Study 2 in Rieskamp (2008). As
explained above, the Rieskamp gambles were generated by semi-
randomly sampling values and probabilities, thereby addressing a
variety of decision-making situations.

The Rieskamp study featured 30 participants, each ofwhichwas
confronted with a series of 180 pairs of gambles; 60 pairs had only
positive outcomes (i.e., gains), 60 pairs had only negative outcomes
(i.e., losses), and 60 pairs had mixed outcomes (i.e., one negative
and one positive outcome).

The full and the α = β restricted CPT were fit to the Rieskamp
data with both the maximum likelihood method and with the
hierarchical Bayesian method.4 For the hierarchical Bayesian
method we estimated posterior distributions based on a total of
50,000 MCMC samples from three chains, after a burn-in of 1000
samples and after subsampling such that only every 10th sample
was recorded. Convergence of the MCMC chains was confirmed
by visual inspection and by computing the R̂ statistic (Gelman &
Rubin, 1992).

6.1. Results and discussion

The main results are summarized in Table 2. Table 2 show the
median of the 30 point estimates for the maximum likelihood
method and the median of the 30 individual posterior modes
for the hierarchical Bayesian method (standard deviations are
given within brackets). Rows 1 and 3 presents estimates for the
full version of CPT and rows 2 and 4 presents estimates for the
constrained version of CPT (constrained so that α = β).

There are three notable aspects of Table 2. First, while there is a
high correspondence between the median point estimate and the
median posterior mode for all parameters, standard deviations are
systematically larger for point estimates than for posterior modes.
That is, as expected, themain difference between the twomethods
is that theMLEmethod indicates larger individual differences than
the the hierarchical Bayesian method.

4 To avoid unreliable estimates of CPT’s parameters in Rieskamp (2008) the
following restrictions were set on the parameters: 0 < α, β ≤ 1, 0.40 ≤ γ , δ ≤ 1,
and 0 < ϕ ≤ 10. However, in order to test the central assumption of prospect
theory, which holds that people are in general loss-averse, we allowed λ to vary
between 0 and 10.
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Fig. 3. Posterior distributions for group-level means for the full version of CPT
(solid lines) and the constrained version of CPT (dotted lines).

Second, when the full version of CPT is fitted to data, both MLE
and the hierarchical Bayesian method suggest that the median
participant in the Rieskamp study is loss-seeking (i.e., λ < 1.0).
When the constrained version of CPT is fitted to data, however,
bothmethods suggest that themedian participant in the Rieskamp
study is neither loss-seeking nor loss-averse. This is also illustrated
by that the posterior distribution for the group-level mean of λ
is almost perfectly symmetric around 1.0 when the constrained
version of CPT is fitted (see Fig. 3). The results presented in
Table 2 and Fig. 3 confirm the pattern that was evident in
the parameter recovery study: the full version of CPT tend to
underestimate λ if α and β are allowed to take different values.
This possibility compromises the psychological interpretation of
the model parameters.

Third, while the MLE method indicates very large individual
differences for λ, the hierarchical Bayesian method indicates small
individual differences for λ. Most notably, while the mode in the
posterior distribution for λ is smaller than 1.0 for all participants,
the point estimates generated by the MLE method is greater than
1.0 for eleven participants and greater than 2.0 for six of these
eleven participants. This discrepancy reflects the fact that for some
participants, the choice data hold no or very little information that
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Table 2
Median point estimate (maximum likelihood estimation) and median of the posterior mode (hierarchical Bayesian method) for each parameter for the data of Rieskamp
(2008, Study 2). Standard deviation is enclosed in brackets.

Method Parameters
α β γ δ λ ϕ

Maximum likelihood .91 (.29) 1.0 (.28) .78 (.25) .77 (.24) .81 (2.67) .25 (0.73)
α = β .90 (.28) .72 (.26) .75 (.26) .97 (1.93) .21 (1.03)

Hierarchical Bayesian .87 (.10) .98 (.06) .71 (.10) .82 (.26) .75 (.04) .19 (.08)
α = β .91 (.16) .68 (.11) .89 (.19) 1.02 (.26) .18 (.09)

Note.
can be used to estimate λ. Thus, single-subject MLE is confronted
with the challenge of trying to find a maximum in a very flat
parameter landscape. The result of this search is likely to yield
almost any random value in the allowed range. In contrast, the
hierarchical Bayesian method uses the information from other
participants to pull extreme estimates in toward the group mean.
This pull is stronger to the extent that the single-subject parameter
is unreliable. The effect is clear: according to MLE, six participants
had point estimates for λ that were higher than 2. According to the
hierarchical Bayesian method, the median of the posterior modes
for these six participants is .74, exactly equal to the posteriormode
of the group-level mean for λ. This suggests that the participants
with high MLE values for λ were not extremely loss-averse;
instead, their data were relatively uninformative with respect to λ,
and in the hierarchical Bayesian method this caused the estimates
to be determined to a relatively large extent by the information
available from the other participants.

Finally, we examined the descriptive accuracy of the hierarchi-
cal CPT (full version) by considering a posterior predictivemeasure.
In order to obtain this measure, we randomly sampled parameter
values from the individual posterior distributions, used these val-
ues to generate predicted choices for each of the 180 items for each
of the 30 participants, and finally compare the predicted choices
with the actual choices. In more detail, the analysis was conducted
as follows (remember, 5000 samples from each of 3 chains were
recorded for each of the six parameters for each of the 30 partici-
pants). (a) By randomly sampling value v1 from a uniform distribu-
tion ranging from 1 to 3 and value v2 from a uniform distribution
ranging from 1 to 5000, one sampling round was determined for
participant i (i.e., iteration v2 from chain v1 for participant i). (b)
The parameter values that in the main simulation had been sam-
pled for participant i on the targeted round were entered into CPT.
(c) The 180 gamble pairs from the Rieskamp study were presented
to themodel and and a choice between gamble A and gamble Bwas
made for each gamble pair. (d) Steps (a)–(c) were repeated once for
each of the 30 participants. (e) The proportion of A choices, across
all participants, was calculated for each of the 180 gamble pairs. (f)
Steps (a)–(e) were repeated 1000 times thereby creating a distri-
bution of predicted proportions of A choices for each gamble pair.

Results of the posterior predictive check showed a clear
correspondence between the medians from the 180 distributions
and the proportion of A choices from the behavioral data (r =

.88 and mean absolute deviation = .11). The range between the
2.5th percentile and the 97.5th percentile in the distribution of
predicted A choices covered the actual proportion of A choices
for 131 out of 180 gamble pairs (73%). If the median in the
distribution of A choices is taken as an indication of which gamble
CPT predicts as most likely to be chosen, the prediction by CPT
corresponded with the modal response in behavioral data for 151
out of 180 gamble pairs (84%; 87% if pairs where 50% of the
participants choose A and 50% choose B are excluded). This analysis
confirms that hierarchical CPT provides at least a decent fit to
behavioral data. However, note that Rieskamp (2008) compared
CPT to alternative choice models, including decision field theory
(Busemeyer & Townsend, 1993); when CPT was rigorously tested
against decision field theory by constructing choice situations in
which the two models made different predictions, decision field
theory performed much better than CPT. The main point of the
reanalysis of the Rieskamp data for the current manuscript was to
illustrate the difficulty of estimating the parameters of a complex
model such as CPT and to highlight the advantage of using a
hierarchical Bayesian method for parameter estimation.

7. General discussion

This article presented a hierarchical Bayesian method to
estimate the parameters of cumulative prospect theory, the most
influential psychological theory for decision making under risk.
The hierarchical Bayesian method, used in several papers in this
special issue (see for example Merkle, Smithson, & Verkuilen,
2011 and Ravenzwaaij, Dutilh, & Wagenmakers, 2011, who
also considers individual differences in decision-making models),
strikes a compromise between the extremes of complete pooling
(i.e., participants are identical) and complete independence (i.e.,
participants are unique) and thereby avoids the risks of both
approaches.

The hierarchical Bayesian method has the advantage that it
provides robust estimates of a model’s free parameters without
ignoring or over-weighting individual differences. It does this by
pulling individual estimates toward the group mean, an effect that
becomes strongerwhen the individual estimate is less reliable. This
so-called shrinkage effect prevents unreliable information from
having an extreme and disproportionate influence. The advantages
of the hierarchical Bayesianmethodwere borne out in a parameter
recovery study and in an application to real data. Compared
to single-subject MLE, we found that the hierarchical Bayesian
method leads to estimates that are less variable and more robust
(this finding mirrors the finding by Ahn, Krawitz, Kim, Busemeyer,
& Brown, in press, who in a similar simulation study explored the
prospect valence learning model).

Apart from demonstrating the benefits of the hierarchical
Bayesian method, this article also provided theoretical insight
about CPT. The parameter recovery study showed that one core
component of prospect theory, namely loss aversion, is very hard
to estimate: the loss aversion parameter λ tends to be dramatically
underestimated if the value function parameters α and β are
both allowed to vary freely. Apparently CPT is able to predict
very similar behavior with different sets of parameters: loss-
averse behavior can also be predicted by having lower values
for α than for β . In order to interpret the parameters of CPT in
terms of psychological processes, we recommend that researchers
constrain CPT such that α and β have to take on the same value.

It should be noted, however, that even the restricted CPT did
not provide any evidence in favor of loss aversion (i.e., evidence
that λ > 1.0) for the Rieskamp (2008) data. This result parallels
findings in several recent studies (e.g. Ert & Erev, 2008; Kermer,
Driver-Linn, Wilson, & Gilbert, 2006; Koritzky & Yechiam, 2010).
For example, in a study by Erev, Ert, and Yechiam (2008) the key
problem included a choice between $0 for sure or a gamble that
provided a fifty-fifty chance to either win or lose $1000. If people
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are loss averse theywill choose the safe option because the gamble
will be perceived as having a negative expected value (the $1000
loss will loom larger than the $1000 gain). Erev et al. (2008) found
that 23 of 45 participants preferred the sure option while the
remaining 22 participants preferred the gamble. That is, they found
no systematic loss aversion. Despite the fact that Rieskamp (2008)
used a paradigm where probabilities and values were explicitly
given while Erev et al. (2008) used a paradigmwhere probabilities
and values had to be learned by experience, data from studies
such as these indicate that the claim that people are in general
loss averse might not be as universal as proposed by Tversky and
Kahneman (1992). Notably, it appears as if data patterns that have
been taken as indicators of loss aversion are heavily dependent
on task-specific factors such as presentation format or response
mode (Ert & Erev, 2008), factors that a model such as CPT does not
naturally account for.

The re-analysis of the data by Rieskamp (2008) showed
that extreme high maximum likelihood estimates for λ might
sometimes be caused by uninformative data rather than by
participants being loss-averse. Hence, in several respects, our
results demonstrate that obtaining clean and reliable estimates for
loss aversion requires considerable care. Moreover, in line with
Kahneman and Tversky (1979) we have restricted the parameters
of CPT to a reasonable range, so that we allowed only for risk
aversion in the gain domain and risk seeking in the loss domain.
If we had not used these restrictions it might have made it even
more complicated to estimate the parameters reliably. In general,
one of the advantages of the Bayesian paradigm is to use prior
distributions to meaningfully restrict the parameter space of the
model under consideration. Finally, the goal of this article was
to illustrate the advantages of a hierarchical Bayesian method
for parameter estimation in comparison to standard maximum
likelihood methods. To illustrate the advantages of the Bayesian
method we used prospect theory as a prominent theory for
decisionmakingunder risk. However, the goal of the present article
was not to examine the empirical validity of prospect theory.
For this purpose rigorous model comparison tests are necessary,
which might illustrate the advantages of alternative models as
compared to prospect theory in predicting decisions under risk
(see Birnbaum, 2008;Harrison&Rutström, 2009; Rieskamp, 2008).

In general, when dealing with a complex model, such as
prospect theory, which has several free parameters it is important
to recognize that the model often might have different ways
to produce almost the same predictions. When the functional
relationships between the parameters of a model are unclear,
the interpretation of a single parameter of a model can often
be misleading. The present article shows that the hierarchical
Bayesian method can lead to more robust estimates of a model’s
free parameter and abetter understanding of the associated theory.
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