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Abstract. The context in which a decision occurs can influence the decision-making process in many ways. In the laboratory, this is often
evident in the effects of recent decisions. For instance, many experiments combine easy and difficult decisions, such as when word frequency is
manipulated in lexical decision. The ‘‘blocking effect’’ describes how such decisions differ depending on whether the conditions are presented in
pure blocks (comprised purely of easy or hard stimuli) or mixed blocks (also known as a ‘‘mixing cost’’). We present a novel extension to these
context effects, demonstrating in two experiments that they can be induced using conditions with identical difficulty, but different timing
properties. This suggests that explanations of context effects based on task difficulty or error monitoring alone might be insufficient, and suggest a
role for decision time. In prior work, we suggested such a hypothesis under the assumption that observers minimize their decision time, subject to
an accuracy constraint. Consistent with this explanation, we find that decisions in slower conditions were based on less evidence when they were
experienced in mixed compared to pure blocks.
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Decisions about ostensibly identical stimuli are influenced
by the difficulty of preceding decisions. Difficulty is often
a factor of primary interest in decision tasks, for instance,
with high-frequency (easy) or low-frequency (hard) words
in lexical decision. If an experiment includes both easy
and difficult conditions, these might either be presented sep-
arately (in pure blocks or between-subjects) or randomly
intermixed. Choices in a pure block of easy stimuli are faster
but less accurate than when those same easy stimuli are pre-
sented in a mixed block, and choices in a pure block of hard
stimuli are slower but more accurate than when those same
hard stimuli are presented in a mixed block. This finding,
referred to as a mixing cost, a blocking effect, or a context
effect, has been observed in many speeded decision tasks,
including sentence verification (Kiger & Glass, 1981), pic-
ture naming and arithmetic (Lupker, Kinoshita, Coltheart,
& Taylor, 2003), and lexical decisions (Lupker, Brown, &
Colombo, 1997; for review see Los, 1996).

In a similar vein, Hawkins, Brown, Steyvers, and
Wagenmakers (in press a) manipulated decision difficulty
by changing the number of alternatives in a perceptual deci-
sion task – decisions between more alternatives are more dif-
ficult than those between fewer alternatives. In different
experiments, participants made judgments either about many
different choice set sizes randomized across trials (in mixed
blocks) or about a single choice set size (in pure blocks). Deci-
sions in a pure block of hard stimuli (larger set sizes) were
slower but more accurate than when those same hard stimuli
were presented in mixed blocks, similarly to the well-estab-
lished blocking effects described above, even though these
judgments were on a much longer timescale.

Hawkins et al. (in press a) interpreted these results by sup-
posing that participants engaged in a speed-accuracy trade-
off (Ratcliff, 1978; Wickelgren, 1977). That is, in the
mixed condition participants elected to spend more time
on easy decisions and less time on difficult decisions, per-
haps in order to minimize the total amount of time spent
in the experiment. The same speed-accuracy tradeoff pat-
terns can emerge in mixed blocks even when participants
are unable to elect their level of caution for easy and hard
trials, because the task structure provides no warning about
the class of upcoming stimuli. For instance, decision makers
may commit to a goal accuracy rate which they will not go
below, and want to perform as fast as possible while remain-
ing above this accuracy criterion (Hawkins, Brown,
Steyvers, & Wagenmakers, in press b). In mixed blocks,
one could establish an intermediate response threshold that
does not change across easy and hard trials. This approach
can result in the same data patterns as ‘‘choosing’’ response
thresholds separately for each experimental condition: more
accurate choices for easy stimuli, and faster but less accurate
choices for hard stimuli, compared to pure blocks. The idea
of minimizing response times conditional on a goal accuracy
rate is related to the idea that participants might adjust their
speed-accuracy tradeoff to maximize ‘‘reward rate,’’ which
is just the rate of correct responses (for an overview see,
e.g., Bogacz, Brown, Moehlis, Holmes, & Cohen, 2006).

In contrast, previous theoretical accounts of blocking
effects have been based on decision difficulty, rather than
decision time. For instance, the self-regulating accumulator
model (PAGAN; Vickers, 1979; Vickers & Lee, 1998,
2000) assumes that the decision maker adjusts performance
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by monitoring confidence, which is influenced by decision
difficulty. Similarly, Jones, Mozer, and Kinoshita (2009)
proposed that the decision maker estimates the average dif-
ficulty of decisions in recent trials, which differs between
pure and mixed blocks. Jones et al. also questioned the fea-
sibility of theoretical accounts based on speed-accuracy
tradeoffs, a point we return to in the General Discussion.

These earlier theoretical approaches assume that differ-
ences in decision difficulty across conditions cause blocking
effects, which contrasts with Hawkins et al.’s (in press a)
assumption that blocking effects are caused by differences
in decision time across conditions. In all of the studies
reviewed above, the easier conditions produced faster choices
than the harder conditions. For instance, the benchmark in
multi-alternative choice is Hick’s Law (Hick, 1952; Hyman,
1953), that response time increases linearlywith the logarithm
of set size (for general overview of Hick’s Law research see
Teichner & Krebs, 1974; Welford, 1980). Presumably, previ-
ous explanations of blocking effects have focused on decision
difficulty rather thandecision speed, simply because difficulty
was the experimental parameter manipulated in those experi-
ments. However, the confound between decision difficulty
and decision timemakes it difficult to distinguish the different
theoretical accounts, and in particular, whether decision time
may also play a role in eliciting blocking effects.

We report two experiments that examine the effects of
decision time independent of decision difficulty. The differ-
ent conditions in these experiments were created by manipu-
lating how rapidly stimulus information is presented. We
used the externalized evidence accumulation task of Brown,
Steyvers, and Wagenmakers (2009), which involves compar-
ing the height of a number of columns and naturally permits
such manipulations. Wemanipulated decision time randomly
across trials (creating mixed blocks) in Experiment 1 and
between-subjects (creating pure blocks) in Experiment 2.
In the mixed blocks of Experiment 1 we observed that deci-
sions from faster and slower conditions produced context
effects similar to previously observed blocking effects from
easier and harder decisions. In Experiment 2, we demonstrate
that these context effects can be almost entirely eliminated by
using a design with pure blocks. The changes observed
across experiments are consistent with the time-minimization
account based on speed-accuracy tradeoffs.

Experiment 1

We use the paradigm developed by Brown et al. (2009). Each
decision involved a display of K columns that grew taller at
different rates, by randomly accumulating increments of
height (henceforth ‘‘bricks’’) at discrete time steps according
to a simple statistical model. With time, one of the columns
would grow taller than the others, on average, and the partic-
ipant’s goal was to identify this target column as quickly as
possible. A difficult aspect of the task was to balance the
tradeoff between speed and accuracy: Early in the process,
when only a few bricks have accumulated, a distractor
column is likely to be taller than the target, by random chance
(see Figure 1 for an example screenshot of the task).

In this paradigm, task speed can be adjusted by changing
the delay between successive time steps, which we refer to as
the ‘‘dropdelay.’’ InExperiment 1wemanipulated dropdelay
using mixed blocks, where the drop delay varied randomly
from trial to trial. We limited decisions to just one set size
(K = 10), which kept decision difficulty constant across trials.
We make the assumption here that drop delay does not influ-
ence task difficulty.We highlight evidence indicating that this
psychophysical assumption is supported in the discussion
following Experiment 2. If context effects are induced by
decision time (as proposed by Hawkins et al., in press a),
and not just decision difficulty, then accuracy and decision
time (measured in discrete time steps) should both change
across levels of the stimulus speed manipulation.

Method

Fifty first-year psychology students from the University of
Newcastle participated online for course credit. Each partic-
ipant completed 6 blocks of 32 trials. Each trial consisted of
K = 10 response buttons displayed along the base of the
screen. The delay between each discrete time step was
manipulated within-subjects, with the drop delay manipula-
tion having eight levels. In the fastest condition a new row
of evidence accumulation tokens (bricks) appeared every
266 ms, but this slowed to 276, 296, 326, 367, 436, 500,
and 625 ms in the slower conditions. These settings meant
that in the fastest condition participants saw evidence accu-
mulate more than twice as quickly as in the slowest condi-
tion. The drop delay of any trial was randomly chosen from
all drop delays, subject to the condition that each drop delay
appeared equally often in each block.

On each trial, K = 10 response buttons of the same
width were lined up abutting one another in the center of

Figure 1. Example screenshot of a trial with K = 10
response alternatives. The dark and light blocks represent
the number of bricks that have accumulated after 10 and 30
time steps, respectively. The participant’s task is to select
the target column, which is Column 7 in this example.
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the base of the display, representing the different choice
alternatives. A trial began with an empty display above
the response buttons. At each time step, a new brick either
fell from above onto the top of the response button, increas-
ing the height of that column, or did not. The probability of
a brick appearing on each column at any time step was .35,
independently for all columns, except for a randomly-
selected target column which had an accumulation probabil-
ity .5. The participant’s task was to identify the target
column as quickly and accurately as possible. Participants
were informed that due to the random nature of the task if
they respond too early they may incorrectly select a distrac-
tor column that had, by chance, accumulated the most bricks
thus far in the trial. For example, in Figure 1 after 10 time
steps have elapsed (indicated by dark bricks) Column 3
was the tallest, even though Column 7 was the target. How-
ever, after an additional 20 time steps (light bricks) Column
7 had accumulated more bricks than the remaining response
alternatives. Participants were free to sample information
from the task environment until they felt confident with their
decision. If a participant waited long enough, the tallest
columns grew near to the top of the display. Whenever this
occurred the column heights were smoothly rescaled to
remain within the display window.

Analysis Strategy

Because part of our argument requires support for a null effect
of drop delay in pure blocks (in Experiment 2), we do not use
null hypothesis significance testing. Instead, we fit multivari-
ate normal distributions parameterized using general linear
models of exactly the same form that would be applied under
standard repeated-measures analysis of variance (ANOVA).
Rather than use null hypothesis significance testing, from
thesemodels we calculate the Bayesian Information Criterion
(BIC; Raftery, 1995; Schwarz, 1978) and use that to approx-
imate posterior model probabilities based on a uniform prior
acrossmodels, and on the assumption that the data-generating
model was one of those under consideration. Similar
approaches have been advocated as alternatives to regular null
hypothesis significance testing under the ANOVA frame-
work; approaches which circumvent some of the pervasive
problems associated with null hypothesis testing (Glover &
Dixon, 2004; Wagenmakers, 2007).

To reassure the reader that our results and conclusions are
not specific to this analysis strategy, we repeated all primary
analyses twice, once using the Akaike Information Criterion
(AIC; Akaike, 1974) and once with null hypothesis signifi-
cance tests accompanied with effect size estimates (see
Appendix). Those analyses were consistent with the BIC
analyses, although the AIC analyses are naturally less strict
in their penalty of model complexity. For further detail and
instruction on Bayesian data analysis, we refer the reader
to a few of the many excellent sources on the topic, includ-
ing: Kruschke (2011), Rouder, Speckman, Sun, Morey, and

Iverson (2009), and Wagenmakers, Lodewyckx, Kiruyal,
and Grasman (2010).

In Experiment 1 we compared the fit of two nested,
linear multivariate normal models. These models correspond
to those considered in a standard one-way repeated-
measures ANOVA: The null model with only a grand mean
and a model that also includes an effect of drop delay.1 We
estimated the model parameters (treatment effects and vari-
ance-covariance terms) using standard general linear model
algorithms. In hierarchical models, such as the repeated-
measures designs here, some subtlety is required in calculat-
ing the appropriate sample size to use in BIC calculations; in
all cases, we used the methods of Pinheiro, Bates, DebRoy,
Sarkar, and R Development Core Team (2011). We denote
BIC approximations to posterior model probabilities with
pBIC.

Results

We excluded data from five participants who made fewer
than 33% correct responses. The remaining data were
screened for outlying trials resulting in the removal of 41 tri-
als with responses faster than 4 time steps and 3 trials slower
than 200 time steps (0.5% of total responses). Throughout
the paper we refer to the number of discrete time steps that
elapsed prior to response as the ‘‘step number.’’ The step
number is a quantifiable measure of the quantity of evidence
used to inform a decision in our externalized accumulation
task, and also does not confuse the outcome measure with
elapsed time.

Mean step number and accuracy data are displayed in
Figure 2 as functions of drop delay, using within-subjects
standard error bars calculated according to Loftus and
Masson (1994). The left panel suggests that mean step num-
ber decreased as the drop delay became longer. That is, in
trials where evidence accumulated more slowly participants
waited for fewer time steps before making a response. This
finding was supported by BIC analysis, with the drop delay
model strongly supported over the null model for both accu-
racy and step number (both pBIC = 1).

Discussion

The results from Experiment 1 suggest that decisions were
based on less evidence (fewer steps of the stimulus display)
in conditions where the columns grew taller at slower rates
compared to faster height accumulation. This represents a
context effect similar to the well-known blocking effect, but
with decision time taking the role of decision difficulty: The
choice accuracy and information required for decisions (i.e.,
step number) both decreased for slow conditions relative to
fast conditions. These results are consistent with decision
makers adjusting their speed-accuracy tradeoff settings
between slower and faster choice conditions. Explanations

1 In all models in Experiments 1 and 2 we added a random effect for subjects, as in repeated-measures ANOVA.
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of blocking effects based on changes in speed-accuracy trade-
off settings must assume that decision makers adjust their
response criteria separately for each decision. These adjust-
ments have previously been considered implausible (Jones
et al., 2009; Ratcliff, 1978) because participants are not gi-
ven advanced warning of the upcoming condition, and
response thresholds presumably take longer to adjust than
the amount of time available during a typical decision
(a few hundred milliseconds). Such a criticism does not
apply to our experiments, because decisions took many
seconds, giving participants ample time for adjustment
(e.g., Forstmann et al., 2008 found that adjustment took less
than 1.5 s).

In Experiment 2 we manipulate drop delay between-sub-
jects, analogous to the pure blocks described above. If our
hypothesis holds, the effect of drop delay on choice accu-
racy and step number observed in Experiment 1 should be
eliminated in Experiment 2.

Experiment 2

Hawkins et al. (in press a) proposed that only differences in
decision time drive context effects, which makes a strong
prediction: If decision time is manipulated in pure blocks,
it should have no effect on the amount of evidence that
observers accumulate prior to response. This means that
both the step number and response accuracy should be unaf-
fected by changes in drop delay. Interestingly, this hypothe-
sis is directly opposed to the predictions of theoretical
accounts based on reward rate (i.e., the idea that people
try to maximize their number of correct responses per unit
time). Recent results have shown that people tend to pro-
duce more careful (slow and accurate) decisions than reward
rate accounts would predict, but after some practice they be-
come closer to optimal (e.g., Balci et al., 2011; Starns &
Ratcliff, 2010). If decision makers maximized reward rate,
accuracy should decrease as the drop delay becomes longer,
since decisions in these conditions take longer (in real time),
so encouraging faster guesses.

Method

A separate group of 172 first-year psychology students from
the University of Newcastle participated online in Experi-
ment 2 for course credit. The delay between each time step
was manipulated between-subjects to create pure blocks,
with each participant randomly assigned to one of seven
drop delays: 276, 296, 326, 367, 436, 500, and 625 ms.
To moderate differences in the total duration of the experi-
ment, participants in the three slowest conditions each com-
pleted 4 blocks of 40 trials, and participants in the four
fastest conditions each completed 6 blocks of 40 trials
(but only data from the first 4 blocks were analyzed below).

In Experiment 2, participants only experienced a single
drop delay condition, which provided capacity for us to also
manipulate the choice set size on a within-subjects basis.
The number of choice alternatives shown on any trial was
randomly selected from K 2 {2, 4, 6, 8, 10, 12, 14, 16,
18, 20}, subject to the condition that each K appeared
equally often in each block.

Apart from the between-subjects manipulation of drop
delay and within-subjects manipulation of set size, all other
experimental details were the same as Experiment 1, includ-
ing the analysis approach. In Experiment 2 there were two
experimental factors, hence we compared the fit of five
nested, linear multivariate normal models, corresponding
to those considered in a standard two-way ANOVA: (1)
the null model with only a grand mean; (2) a single set size
effect; (3) a single drop delay effect; (4) additive set size and
drop delay effects; and (5) the saturated model with additive
set size and drop delay effects as well as an interaction
between the two.

Results

Data from eight participants with fewer than 33% correct
responses were excluded. The remaining data were screened
for outlying trials, with the removal of 410 trials faster than
4 time steps and 41 trials slower than 200 time steps (1.36%
of total responses).

Figure 3 illustrates the data, with mean response accu-
racy for each of the seven drop delay conditions graphed
in the top panel. The middle panel shows the mean step
number on which responses were made, and the bottom pa-
nel shows corresponding mean response times (in seconds).
Focusing on the lower two panels, across all drop delay con-
ditions we observed the pattern expected under Hick’s Law;
response time increased approximately log-linearly with set
size.

Inspection of the upper two panels of Figure 3 suggests
that drop delay had no systematic effects on choice accuracy
or step number. Confirming this, the general linear model
that included only an effect of set size was strongly
supported in both dependent measures: pBIC = 1 for
response accuracy and pBIC = .93 for step number. Since
there was no effect of drop delay on the step number on
which participants responded, there was conversely a large
and systematic effect of drop delay on the real time taken
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Figure 2. Mean step number (left panel) and accuracy
(right panel) from Experiment 1, as functions of the drop
delay. The error bars represent ±1 within-subjects standard
errors of the mean.
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for each decision (i.e., response time in seconds, lower panel
of Figure 3). This was confirmed by good support for the
drop delay and set size interaction model, pBIC = .93. The
interaction model indicates that there was a greater increase
in response latency (in seconds) with increasing set size for

the slower drop delay groups than faster drop delay groups.
Although response latency was bound to differ across drop
delay groups given the step number and accuracy data, this
result illustrates that there were strong and reliable differ-
ences in real time across groups, which apparently had no
effect on decision accuracy. For instance, the slowest drop
delay condition yielded response times between two and
three times longer than the fastest condition.

Discussion

Manipulating the speed of information accumulation in the
stimulus display systematically influenced the speed of
participants’ decisions, but apparently did not alter response
accuracy, or the amount of information used to make a deci-
sion. This result supports our hypothesis that pure or mixed
block presentation of decision time, and not just decision
difficulty, can induce context effects in decision making.
The null effect of drop delay on mean step number and
accuracy also provides support for our assumption that the
speed of the stimulus display did not influence task
difficulty.

There are theoretical implications from our finding that
equivalent quantities of evidence were accumulated across
the seven drop delay conditions of Experiment 2. Participants
waited more than twice as long in the slowest condition than
in the fastest condition in order to make decisions with very
similar accuracy. This is inconsistent with the idea that deci-
sion makers try to optimize reward rate (Bogacz et al., 2006;
Starns & Ratcliff, 2010). In slower conditions, reward rate –
the rate of correct responses – can be improved by making
faster, but less accurate, decisions compared with faster con-
ditions, but this did not happen in Experiment 2. However, it
is possible that either our design did not particularly encour-
age participants to maximize reward rate, as the total number
of decision trials was fixed at the outset, or that many ses-
sions of practice are required before participants can opti-
mize reward rate (Balci et al., 2011; Starns & Ratcliff,
2010). Another possibility is that the range of drop delays
we used was not large enough – perhaps reward rate maxi-
mization might have occurred if even slower drop delays
were introduced. Finally, it could be that reward rate is more
difficult to maximize in externalized evidence accumulation
tasks compared to more traditional speeded choice tasks.

Our results are, however, consistent with decision mak-
ers optimizing a restricted notion of reward rate. As pro-
posed by Hawkins et al. (in press b), the data are
consistent with the idea that participants set a goal accuracy
rate (for the entire experiment), and then maximize reward
rate subject to this accuracy goal, by minimizing their mean
response time. For instance, suppose a participant aimed to
achieve 60% correct responses throughout the experiment.
The shortest total experiment time possible under this con-
straint is achieved by responding more accurately in the fast-
est conditions (small set sizes) and less accurately than the
goal in the slowest conditions (large set sizes), as observed
in the upper panel of Figure 3. The idea of a minimum
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Figure 3. Mean accuracy, step number, and response time
(seconds; upper, middle, and lower panels, respectively)
from Experiment 2. The drop delay conditions are
numbered from fastest to slowest (1–7). A pooled
between-groups error bar with ±1 standard errors of the
mean is shown in each panel.
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acceptable accuracy rate neatly explains the consistent over-
all accuracy across drop delay conditions.

Quantitative Comparison
of Experiments 1 and 2

We can provide a more direct comparison of the pure and
mixed experiments by averaging the Experiment 2 data
across set sizes, to produce a design closer to the design
of Experiment 1. Similar, but noisier, results are obtained
if only the K = 10 data are extracted from Experiment 2
rather than averaging across all set sizes. The averaged data
from Experiment 2 are overlaid on data from Experiment 1
in Figure 4. The upper and middle panels show accuracy
and step number data, respectively. As drop delay increased,
participants in the mixed blocks waited for less information
before making decisions that were subsequently less accu-
rate. In contrast, in the pure blocks both accuracy and mean
step number were almost unaffected by manipulation of
drop delay.

We again used BIC, calculated from the lines of best fit,
to approximate the posterior model probabilities, in order to
examine the trends in data with increasing drop delay. For the
mixed and pure blocks separately we compared a null model
(i.e., the slope of the best fitting line is zero) against a drop
delay model (i.e., nonzero slope). For the mixed blocks used
in Experiment 1, this analysis strongly supported an effect of
stimulus speed on accuracy and step number – BIC analyses
clearly supported an effect of drop delay on step number
(pBIC = 1) and on choice accuracy (pBIC = .71). For the pure
blocks used in Experiment 2, in contrast, the evidence was in
favor of the opposite hypothesis, constant slopes for accuracy
(pBIC = .77) and step number (pBIC = .76).

Max-Minus-Next Heuristic

In this section,we use a simple cognitivemodel to test directly
our hypothesis about the speed-accuracy tradeoff. Our exter-
nal evidence accumulation paradigm affords direct measure-
ment of the quantity of evidence required to trigger a
decision, by examining the accumulated bricks at themoment
of response.These data can benaturally interpreted in terms of
the ‘‘max-minus-next’’ heuristic, which holds that a response
is triggered as soon as the evidence for themost likely alterna-
tive exceeds the evidence for the second most likely alterna-
tive by some threshold amount, D. Dragalin, Tartakovsky,
and Veeravalli (1999, 2000) demonstrated this simple deci-
sion rule approximated a statistically optimal multi-hypoth-
esis sequential probability ratio test (Baum & Veeravalli,
1994), when error rates are low. Brown et al. (2009) inter-
preted the max-minus-next heuristic as a simple cognitive
model, and showed that it provided a good account of data
from an experiment similar to our Experiment 2.

An estimate of the max-minus-next model’s parameter,
D, is easily calculated from the data of each trial. At the

point of decision in each trial, we find the two alternatives
with the largest and second largest number of accumulated
bricks, and calculate the difference in number of bricks
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between the two. The lower panel of Figure 4 shows the
average D values from the pure and mixed blocks as func-
tions of drop delay. As expected, in the mixed blocks there
was very strong evidence that the max-minus-next threshold
value (D) decreased as the drop delay became longer, with
this model strongly supported over the null model, pBIC = 1.
This suggests that when the stimulus display evolved more
slowly, choices were based on less careful decision criteria.
This is consistent with a time-based context effect; decision
makers wait for more evidence in faster choice conditions
than slower conditions. In contrast, when drop delay was
presented in pure blocks there was evidence in favor of
the null model, pBIC = .82. These findings reinforce our
conclusions from the analyses of response time and accu-
racy data. When the rate of evidence accumulation (i.e., drop
delay) is presented in a pure block, we observe no effect of
this parameter on response accuracy or the amount of infor-
mation accumulated prior to choice.

Failing to Choose the Maximum Alternative

In our expanded judgment task, the column most likely to be
the target, at any moment, is always the one tallest (the
‘‘maximum alternative’’). Across participants and trials,
86.3% of responses in Experiment 1 responses and 87.6%
of responses in Experiment 2 were to the maximum alterna-
tive. This implies that participants were operating in some
clearly suboptimal manner on about every seventh trial.
To check that this behavior did not drive our results, we
reran the above analyses, restricted to trials where the
response was to the maximum alternative. For those analy-
ses, there were no changes to the step number, accuracy, or
response time results reported for either experiment.

A more prosaic explanation for some of these subopti-
mal responses is a delay between the point of decision
and the time of response, a ‘‘response lag.’’ Such a response
lag is included in almost all decision models (called ‘‘non-
decision time’’ in accumulator models such as: Brown &
Heathcote, 2008; Ratcliff, 1978; Usher & McClelland,
2001) and the size of this delay is typically estimated indi-
rectly, by estimating model parameters from response time
data. The externalized nature of our evidence accumulation
task allows us to estimate this lag more directly. As reported
by Brown et al. (2009), we estimated the response lag by
first assuming that participants’ responses would more often
align with the maximum alternative at the time the decision
was made, than at the time the response was executed. We
then identified the lag that maximized the agreement be-
tween response choice and the maximum alternative, sepa-
rately for each participant and each drop delay condition.

The estimated response lags were remarkably constant
across participants and conditions, when measured in real
time (rather than discrete steps), with an average of 1.27 s
(SD = 0.91 s) in Experiment 1 and 1.06 s (SD = 0.73 s)
in Experiment 2. We also confirmed that when the max-
minus-next threshold parameter, D, was recalculated taking
into account the response lag, the patterns shown in Figure 4
were mostly unchanged (D decreased a little less across drop

delay, but the decrease was still statistically reliable). Fur-
thermore, when taking into account the estimated response
lags, the proportion of responses to the maximum alternative
increased markedly, to 97.6% in Experiment 1 and 96.2% in
Experiment 2.

General Discussion

Decision context can exert a strong influence on choice
behavior. Responses to the same stimulus differ as a func-
tion of preceding stimuli and responses. We provided a
new example of context effects in choice elicited by a simple
within- or between-subjects change in decision time, which
we manipulated by altering the rate of evidence accumula-
tion. This finding suggests that previous accounts of block-
ing effects founded on task difficulty alone might be
incomplete, since a context effect emerged even when diffi-
culty was held constant. We used a simple heuristic model to
demonstrate that choices in the slower conditions of the
mixed block (i.e., longer drop delays in Experiment 1) were
based on less evidence than their faster condition counter-
parts. Finally, when the same drop delay parameter was pre-
sented in a pure block (as in Experiment 2), patterns of
choice accuracy and information accumulation (step num-
ber) did not differ across any level of this between-subjects
manipulation.

If difficulty-based explanations of context effects alone
are not sufficient, how should we explain these findings?
A possible alternative is through subject-controlled changes
in the speed-accuracy tradeoff. Behavior in pure blocks was
consistent with a single tradeoff setting established across
the block, while in mixed blocks a different setting was
apparently used depending on the expected decision time
(e.g., an easy or hard trial, or a fast or slow drop delay). This
explanation was supported by empirical observation of the
speed-accuracy tradeoff parameter from the max-minus-next
heuristic model, as applied to our data. Response threshold
approaches have been rejected by some based on philosoph-
ical and empirical reasons (e.g., Jones et al., 2009). For in-
stance, advance knowledge of the stimulus class of the
present trial might be required in order to adjust the response
threshold in time for the upcoming decision, and this infor-
mation is not usually available. However, in our experiments
the decision times were sufficiently slow that participants
could easily have adjusted their decision thresholds during
the trial, without advanced knowledge (e.g., Forstmann
et al., 2008 found that participants were able to adjust their
speed-accuracy tradeoff settings in less than 1.5 s, which is
much faster than the decisions made by our participants).

In another work, we recently described a context effect
caused by decision difficulty, and proposed an account for
that effect based on speed-accuracy tradeoffs (Hawkins
et al., in press b). This account assumed conditional optimal-
ity, generalizing the idea of optimizing reward rate. We as-
sumed that participants maintain a goal accuracy rate (e.g.,
achieve 60% correct responses) and then adjust their
response threshold settings wherever possible to minimize
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the time taken to complete the experiment while still achiev-
ing their goal accuracy (we refer to this approach as ‘‘Min-
RT’’). The current data are qualitatively consistent with this
explanation. For instance, the mixed blocks of Experiment 1
afforded participants the chance to alter their response
thresholds between slower and faster conditions. For a fixed
level of accuracy, shorter overall experiment times are
achieved by responding more accurately than the goal rate
for faster conditions (short drop delays) and less accurately
than the goal rate for the slower conditions (long drop de-
lays), as observed in the data. The same Min-RT explanation
holds for Experiment 2, where the between-subjects manip-
ulation of stimulus speed did not afford participants the
chance to decrease total experiment time by changing re-
sponse thresholds across levels of the drop delay manipula-
tion. Assuming the goal accuracy rate of participants was
not affected by the drop delay condition they were randomly
allocated to, the fastest way to finish the experiment is to re-
spond with the same (goal) accuracy for the whole experi-
ment. We note, however, that the data from Experiment 2
were consistent with changing response thresholds across
different choice set sizes. As in Hawkins et al., accuracy de-
creased as the number of choice alternatives increased, con-
sistent with the Min-RT hypothesis.

Our data also provide proof-of-concept support for a stan-
dard assumption of many models of speeded decisions
(Brown & Heathcote, 2005, 2008; Ratcliff, 1978; Usher &
McClelland, 2001; Usher, Olami, & McClelland, 2002).
These models assume that the time taken to make a decision
depends only on the amount of evidence accumulated for
and against the various alternatives. This assumption is dif-
ficult to test in traditional choice tasks where the process of
evidence accumulation is assumed to be internal and impli-
cit, for example, in perceptual decisions about the color of a
stimulus or a recognition memory judgment. In contrast, the
external accumulation paradigm used here makes the accrual
of evidence explicit and observable (see also: Busemeyer &
Rapoport, 1988; Usher & McClelland, 2001; Vickers, 1979).
It might be that the externalization of evidence accumulation
imposed a different task strategy compared to internal and
implicit choice tasks. At a minimum, however, the data from
Experiment 2 support the notion that evidence, not decision
time, was the determining factor for participants.

These data are therefore inconsistentwithmodels inwhich
decision time plays a role independent of decision difficulty.
For example,Schneider andAnderson (2011) propose a mod-
el for multi-alternative choice based on the ACT-R cognitive
architecture. Decisions in this model are composed of lower-
order mental operations intrinsic to ACT-R (see Anderson
et al., 2004), such as retrieving chunks and production rules
from memory. Each subprocess is assumed to take a certain
amount of time, and the predicted decision time is the sum
of these parts. It could be that the data from expanded judg-
ment tasks are produced by different underlying choice
mechanisms than those proposed in the ACT-R memory
model. Nevertheless, it is difficult to reconcile this model
with the current data, which suggests that accumulated evi-
dence, rather than elapsed time, is what determines response
timing. It is possible that such a model could account for our

Experiment 2 data by assuming that participants repeatedly
run ‘‘micro-decisions’’ that are very fast, over and over
again during the course of a trial, and make a response only
when the result of one of these micro-decisions exceeds a
criterion on some scale (such as confidence). However, it
is hard to see how such an account can be separated from
an information accumulation account.
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Appendix

Alternate Statistical Analyses

In this appendix we demonstrate that the results presented
throughout the main text are not dependent on our use of
BIC. We repeat our main analyses from Experiments 1
and 2 below, and report BIC (the values on which the
approximations to posterior model probabilities, pBIC, were
based), the Akaike Information Criterion (AIC; Akaike,
1974), and null hypothesis significance tests, using analysis
of variance (ANOVA: one-way repeated measures in
Experiment 1, with drop delay manipulated within-subjects;
and two-way mixed in Experiment 2, with drop delay
manipulated between-subjects and set size manipulated
within-subjects). To aid interpretation of AIC and BIC val-
ues, we also repeat below the BIC-based approximations
to posterior model probabilities (pBIC) reported in the main
text as well as the analogous measure for AIC, known as
‘‘Akaike weights’’ (Burnham & Anderson, 2004), denoted
below with wAIC.

The differences between the BIC analyses reported in the
main text and the AIC analyses and ANOVA reported below
are slight. Since ANOVA cannot directly test the null model
in either Experiment, nor the additive model in Experiment
2, we appeal to a standard measure of effect size in general
linear models (partial g2) to illustrate that null models cap-
ture very little of the variance in the data. Furthermore,
the nature of the complexity penalty in AIC means that
AIC will be more lenient on complex models than BIC,
for our data. AIC is given by 2k� 2ln(L), and BIC by kln(n)
– 2ln(L), where k is the number of parameters in the model,
n is the number of data points in the observed data, and L is
the maximized value of the likelihood function for the esti-
mated model. For each additional parameter in the model,
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AIC adds a penalty term of 2, whereas BIC adds a penalty
of ln(n), which is much larger than 2 in our experiments.

In Tables A1 and A2 we show that on the whole, the
three analyses provide convergent conclusions. In Experi-
ment 1, AIC, BIC, and ANOVA all agree perfectly: They
all provide strong evidence for the set size model and do
so for both accuracy and step number (Table A1). In Exper-
iment 2, AIC and BIC agree perfectly for the accuracy data
and the response time data. For the step number data, AIC
shows some support for the model favored by the other
approaches (an effect of set size only), but also shows sup-
port for a more complex model that also allows an additive
effect of drop delay. In Experiment 2, BIC and ANOVA
agree perfectly for step number and response time data, both
favoring the set size only model and the saturated model,
respectively. However, for the accuracy data, BIC (and
AIC) prefer the simple set size only model, whereas the
ANOVA approach suggests a small (g2 = .07) interaction
effect is also present. Inspection of Figure 3 suggests this

may be due to noise in the K = 18 condition for drop delay
436 ms (line 5 in Figure 3). This set size demonstrated par-
ticularly low mean accuracy, which was the result of a few
participants responding close to chance in this set size who
were not excluded from the overall analysis since their mean
accuracy was above the exclusion criterion. To check this
interpretation, for the 436 ms drop delay group we replaced
the mean accuracy for K = 18 trials with the median of the
K = 16 and K = 20 trials, separately for each participant.
This analysis did not change the AIC and BIC results, or
the ANOVA main effects of set size and drop delay, but
did reduce the strength of the drop delay by set size interac-
tion: F(54, 1413) = 1.46, p = .02, partial g2 = .05.
Although this interaction would be declared significant by
a = .05 convention, given the size of the tail probability
and effect size estimate, relative to the other effects in re-
ported in Table A2, we would be hesitant to consider this
interaction as a reliable effect.

Table A1. Experiment 1 analyses of mean accuracy and step number. For AIC and BIC the preferred model is the one with
the lowest value, denoted with an asterisk

Model (effect) AIC (wAIC) BIC (pBIC) F-ratio (df) p value Partial g2

Accuracy Null �480.65 (0) �469.00 (.001) – – –
Drop delay �506.03* (1) �482.74* (.999) 7.78 (7,308) < .001 .15

Step number Null 2385.69 (0) 2397.34 (0) – – –
Drop delay 2070.12* (1) 2093.41* (1) 68.89 (7,308) < .001 .61

Table A2. Experiment 2 analyses of mean accuracy, step number, and response time in seconds. The additive model refers
to the additive set size and drop delay effects. The saturated model refers to the additive set size and drop delay
effects as well as the interaction between the two. For the ANOVA, the saturated model denotes the interaction
effect. For AIC and BIC the preferred model is the one with the lowest value, denoted with an asterisk

Model (effect) AIC (wAIC) BIC (pBIC) F-ratio (df) p value Partial g2

Accuracy Null �716.57 (0) �700.37 (0) – – –
Set Size �2099.55* (.994) �2067.15* (1) 302.69 (9,1413) < .001 .66
Drop delay �706.95 (0) �685.34 (0) .60 (6,157) .73 .02
Additive �2089.49 (.006) �2051.69 (0) – – –
Saturated �2074.69 (0) �2031.49 (0) 1.89 (54,1413) < .001 .07

Step number Null 11693.22 (0) 11709.43 (0) – – –
Set size 10619.43 (.466) 10651.83* (.931) 202.51 (9,1413) < .001 .56
Drop delay 11693.16 (0) 11714.77 (0) .61 (6,157) .72 .02
Additive 10619.23* (.513) 10657.04 (.069) – – –
Saturated 10625.62 (.021) 10668.82 (0) 1.03 (54,1413) .42 .04

Response time Null 8944.38 (0) 8960.58 (0) – – –
Set size 7908.07 (0) 7940.48 (0) 178.95 (9,1413) < .001 .53
Drop delay 8907.70 (0) 8929.30 (0) 9.30 (6,157) < .001 .26
Additive 7890.23 (.005) 7928.04 (.069) – – –
Saturated 7879.64* (.995) 7922.84* (.931) 3.45 (54,1413) < .001 .12
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