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• The linear ballistic accumulator model has had some success, assuming a normal distribution for drift rates.
• We generalise this model to allow for non-normal drift rate distributions.
• The approach is illustrated with gamma, lognormal and Fréchet distributions.
• All four new variants fit data reasonably, but not identically.
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a b s t r a c t

The linear ballistic accumulator model is a theory of decision-making that has been used to analyse data
from human and animal experiments. It represents decisions as a race between independent evidence
accumulators, and has proven successful in a form assuming a normal distribution for accumulation
(‘‘drift’’) rates. However, this assumption has some limitations, including the corollary that some decision
times are negative or undefined. We show that various drift rate distributions with strictly positive
support can be substituted for the normal distribution without loss of analytic tractability, provided the
candidate distribution has a closed-form expression for its mean when truncated to a closed interval.
We illustrate the approach by developing three new linear ballistic accumulation variants, in which the
normal distribution for drift rates is replaced by either the lognormal, Fréchet, or gamma distribution.We
compare some properties of these new variants to the original normal-rate model.

© 2015 Elsevier Inc. All rights reserved.
The linear ballistic accumulator model (LBA: Brown & Heath-
cote, 2008) is an evidence accumulationmodel for simple decision-
making, which has been applied to a wide range of data from
human and animal experiments. The LBA assumes that decisions
are made by separate independent accumulators, each of which
gathers evidence in favour of a different choice outcome, with the
first accumulator to reach a threshold deciding the response. Fig. 1
illustrates a typical LBA accumulator, with a decision threshold
(dotted line) and an accumulation process (rising arrow). Fig. 1 also
shows the simplicity of the LBA model, with constant linear accu-
mulation, and allowing just two sources of variability. The shaded
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rectangle indicates random variability in the starting point of the
evidence accumulation process, and the bell curve indicates ran-
dom variability in the rate of evidence accumulation. Both of these
sources of randomness operate independently fromdecision to de-
cision, and independently between accumulators corresponding
to different choices. Using just these two sources of variability,
the LBA model accounts for the variability observed in decision-
making data across a wide range of experimental paradigms.

Following similar assumptions for the diffusion model (Ratcliff
& Rouder, 1998), the LBA model has a uniform distribution for the
starting points of evidence accumulation, and a normal distribu-
tion for the speed of accumulation (‘‘drift rates’’). These assump-
tions allowed the development of simple, closed-form expressions
for both the probability density function (PDF) and the cumula-
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Fig. 1. Schematic LBA accumulator. As decision time grows (abscissa) evidence is
accumulated (ordinate), with an example accumulation trajectory shown by the
rising arrow. Typically, several independent accumulators would race in parallel,
representing the different choices, with the decision triggered by the first to reach
threshold (dotted line). Variability in decision-making is modelled by randomness
in the start point of evidence accumulation and in the accumulation rate. These are
conventionally assumed to follow uniform and normal distributions, respectively.

tive distribution function (CDF) for the finishing times of the accu-
mulation process (Brown & Heathcote, 2008). This mathematical
tractability is an important feature of the LBA model. For example,
it makes efficient estimation easy using awide variety of optimisa-
tion techniques and statistical approaches (Donkin, Averell, Brown,
& Heathcote, 2009; Turner, Sederberg, Brown, & Steyvers, 2013).

The assumption of a normal distribution for drift rates in the
LBAmodelmeans that on some trials it is possible that the sampled
drift rates for all accumulators will be negative, so a decision is
never made. Brown and Heathcote (2008) found that such cases
were extremely rare in practicewhen fitting to a range of empirical
data sets. However, here we address this potential problem by
developing a general mathematical approach that maintains the
mathematical tractability of the LBA model while allowing for
various, strictly positive, drift rate distributions.

In the following, we first develop a general approach for work-
ingwith a class of drift rate distributions in the LBAmodel.We then
illustrate thismethod using three distributions from this class. This
is followed by an investigation of the ability of the three new LBA
model variants, as well as a variant of the original LBA, to account
for seminal data reported by Wagenmakers, Ratcliff, Gomez, and
McKoon (2008). We also investigate similarities between the LBA
model variants, by fitting each variant to synthetic data generated
by the other variants. The three new variants all assume drift rate
distributions which are strictly positive. Therefore, to make the
comparison more precise, rather than compare against the origi-
nal LBA (with normally distributed drift rates) we employ a slight
modification: we assume that the normal distribution of drift rates
is truncated to positive-only values. To keep this clear, we refer to
this variant as the ‘‘truncated normal LBA’’. The truncated normal
LBA has simple analytic solutions, and has been shown to be al-
most identical, in practice, to the conventional LBA (e.g., Heathcote
& Love, 2012).

1. Analytical derivation of PDF for arbitrary drift rate distribu-
tion

For the purposes of a very wide variety of applications, it
is sufficient to know the density and cumulative distribution
functions (PDF and CDF, respectively) for the finishing times of a
single linear ballistic accumulator. For example, with these two
expressions, the joint density over response time and choice can
be written via standard independent-race equations, for a large
range of decision models. These models include simple races for
N-alternative forced choice, as well as more complex architectures
involving logical AND and OR stopping rules (Brown & Heathcote,
2008; Eidels, Donkin, Brown, & Heathcote, 2010).

Brown and Heathcote (2008) derived the CDF for the linear bal-
listic accumulator model with normally-distributed drift rates by
Fig. 2. Cumulative distribution function (CDF) of the distance, p, between the
starting point of evidence accumulation and the threshold, which makes clear the
reason for the three-branch structure of the equation for the CDF for finishing times.
The distribution is uniform on the interval [

b−A
t , A

t ], so its CDF is: zero for values
smaller than b−A

t ; one for values larger than A
t ; and increases linearly between those

points.

working directly with the expression for the normal distribution’s
density function. At one point in their analysis, one of the terms in
the expression for the CDF is related to a truncatedmeanof the drift
rate distribution. It is this observation that motivates our current
work, and allows the development of a more general approach.

Consider a single linear ballistic accumulator, with uniformly
distributed starting points across trials. Our approach to the
problem involves conditioning on a particular sample of the drift
rate, which we call u. Conditioning this way allows for calculation
of the finishing time in the obvious manner. Of course, these rates
cannot be observed in practice, so we then integrate over the
distribution of start points, to remove the conditionality.

Suppose, without loss of generality, that the uniform distribu-
tion of start points is on the interval [0, A], and that the response
threshold is at b ≥ A; therefore, the distribution of distances from
starting point to threshold is also uniform, on the interval [b−A, b].
Suppose also that drift rates are distributed across trials according
to a strictly positive distributionwith density g and cumulative dis-
tribution function G. Let P be the random variable representing the
distance to threshold on some trial, with a uniform distribution on
the interval [b−A, b], and letU be the random variable for the drift
rate, with distribution G and density g . The time to reach thresh-
old is then simply distance to be travelled (i.e. the sample from P)
divided by rate of travel (i.e. the sample from U ). Thus, the cumu-
lative distribution function for finishing times of this accumulator
at time t , say F(t), is given by:

F(t) = prob

P
U

≤ t


= prob(P ≤ U t).

To obtain the probabilities associated with the random variable
U , we integrate over samples from this distribution, say u, with
respect to the density function, g(u), which has support on the
positive real line:

F(t) =


∞

0
prob[P ≤ ut]g(u)du. (1)

Since P has a uniform distribution, it has a three-piece linear
CDF, as shown in Fig. 2. The CDF gives the probability required in
Eq. (1), by expansion into three terms: it is zerowhenever u < b−A

t ;
it is linear in u, whenever b−A

t < u < b
t ; and it is one whenever

u > b
t . The first of these three branches is zero, and so is dropped
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below. The second linear branch can be expanded into a termwith
integrand g(u) and another term with integrand ug(u). The third
branch also gives a term with integrand g(u). Together, this gives:

F(t) =
A − b
A

 b
t

b−A
t

g(u)du +
t
A

 b
t

b−A
t

ug(u)du +


∞

b
t

g(u)du.

The terms with integrands of g(u) require only evaluation of G,
by definition of the cumulative distribution function. However, the
term with integrand ug(u) is related to the mean of the drift rate
distribution when truncated to the interval represented by that
term’s limits of integration. For presentation reasons, it is helpful
to add the normalising constant corresponding to the mass of the
distribution in the interval [ b−A

t , A
t ].With the normalising constant

included, and replacing the integrals in the other terms with the
distribution function for G:

F(t) =
A − b
A


G

b
t


− G


b − A

t


+

t

G
 b
t


− G

 b−A
t


A

×

 b
t

b−A
t

ug(u)du
G
 b
t


− G

 b−A
t

 + 1 − G

b
t


.

Let Z(t) represent the mean of the distribution g after trunca-
tion to the above interval, that is:

Z(t) =
1

G
 b
t


− G

 b−A
t

  b
t

b−A
t

ug(u)du.

Then, after some simplification:

F(t) = 1 +


tZ(t) − b

A


G

b
t


+


b − A − tZ(t)

A


G

b − A

t


. (2)

The density function for the finishing times of this linear
ballistic accumulator is found by differentiation of Eq. (2) with
respect to t . This requires Z(t) to be differentiable at all t > 0;
we denote its derivative at t by Z ′(t). Then recalling that, since G is
a CDF, d

duG(u) = g(u), this gives:

f (t) =


Z(t) + tZ ′(t)

A


G

b
t


− G


b − A

t


+


tZ(t) − b

A


g

b
t


+


b − A − tZ(t)

A


g

b − A

t


. (3)

Eqs. (2) and (3) can be used to provide closed-form expressions
for the CDF and PDF for a linear ballistic accumulator model
with any strictly positive distribution for drift rates, provided that
the drift rate distribution has a closed form expression for its
truncatedmean (Z(t), above), and that this expression can be easily
differentiated with respect to t (Z ′(t) above).

2. Three new example drift rate distributions

We illustrate the above method with three new examples of
strictly positive drift rate distributions: the gamma, Fréchet and
lognormal distributions. The question of which is the best distri-
bution to use for drift rates is very complex, and beyond the scope
of this work. Nevertheless, we provide some discussion of the dif-
ferent considerations in this debate, in the concluding sections.
2.1. Gamma distributed drift rates

The gamma distribution is an interesting case partly because it
can approximate the normal distribution under some parameter
settings. Given the success of the traditional LBA model (with
normally distributed drift rates) in fitting data, this suggests that
a gamma-LBA model might be similarly successful.

Suppose that drift rates follow a gamma distribution with
parameters α and β for shape and scale, respectively. Then Z0(t)
from Eqs. (2) and (3) is the mean of a gamma distribution
restricted to the interval [ b−A

t , b
t ]. Coffey andMuller (2000) provide

expressions for this mean, which lead to:

Z0(t) =
0(α + 1)
β0(α)


G
 b
t ; α + 1, β


− G

 b−A
t ; α + 1, β


G
 b
t ; α, β


− G

 b−A
t ; α, β

 
. (4)

Here, G(x; a, b) represents the cumulative distribution function
of the gamma distribution evaluated at x, with shape parameter a
and scale parameter b (see Appendix). Throughout, we use 0(x)
to represent the gamma function and 0(x, a) to represent its
generalisation to the lower incomplete gamma function (also both
specified in the Appendix). The derivative with respect to time
of Eq. (4), Z ′

0(t), is easy to calculate but also cumbersome—see
Appendix.

2.2. Fréchet distributed drift rates

Let drift rates be distributed according to a Fréchet distribution
with scale and shape parameters µ and α, respectively, and let
Fr(x; .α, µ) represent the corresponding cumulative distribution
function. Then Nadarajah (2009) provides an expression for the
truncated mean, which leads to:

ZFr(t) =

0


1 −

1
α
,


µb
t

−α


− 0


1 −

1
α
,


µ(b−A)

t

−α


µ

Fr
 b
t ; µ, α


− Fr

 b−A
t ; µ, α


 . (5)

Once again, see Appendix for the derivative with respect to
time.

An interesting consequence of assuming a Fréchet distribution
for drift rates is that, in the absence of trial-to-trial variability in the
starting point of evidence accumulation (i.e., with parameter A =

0), Fréchet-distributed drift rates give rise to Gumbel distributions
for time-to-threshold. This provides interesting links to models
used in the study of discrete choice in various applied areas
(Colonius & Marley, 2014; Hawkins et al., 2014).

2.3. Lognormal LBA

Heathcote and Love (2012) investigated a simplified linear
ballistic accumulator model, the Lognormal Race Model, where
both the drift rate and the start point to threshold distributions
were lognormal, and so the distribution of threshold-crossing
times for an accumulator is also lognormal. Here, we outline the
casewhere the starting point distribution remains uniform and the
threshold a constant, but the drift rates are distributed lognormally
with parameters µ and σ for the underlying normal distribution.
Bebu and Mathew (2009) provide expressions for the moments of
the truncated lognormal distribution. The truncated mean takes
the form:

ZLN(t) = exp


µ +
σ 2

2



×


Φ

log

 b
t


; µ + σ 2, σ


− Φ


log

 b−A
t


; µ + σ 2, σ


Φ

log

 b
t


; µ, σ


− Φ


log

 b−A
t


; µ, σ

 
. (6)
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Here, Φ(x; µ, σ) is the normal cumulative density function
evaluated at x with mean µ and standard deviation σ . The
derivative with respect to time is given in the Appendix.

3. Similarities and differences between four LBA variants

The three new LBA variants developed above have quite
different properties for their drift rate distributions. The new
variants have positively skewed drift rate distributions, and those
distributions also differ in how quickly their right tails approach
zero. We investigated the relationships between these new
variants, and truncated normal LBA, in a model recovery exercise.
This exercise involved generating synthetic data from each of the
three new variants and from the truncated normal LBA, and then
fitting those data with each of the four LBA variants in turn. The
results revealed both similarities and differences among variants.

To determine the values to usewhen generating data, we began
with parameter settings for the truncated normal LBA which were
typical of parameters estimated from standard psychophysical
experiments. These parameters are given in the column headed
Truncated Normal in Table 1. To determine reasonable parameter
settings for the three new LBA variants, we generated a very large
sample of synthetic data from the truncated normal LBA using
the parameters in Table 1, and found the maximum-likelihood
estimates for the parameters of each of the three new model
variants by fitting those data. These parameters were rounded off,
and are reported in the left three columns of Table 1. There were
a total of eight free parameters for each LBA variant, reflecting
an experiment investigating two-alternative forced choices in
two conditions, one emphasising decision speed, the other
emphasising decision accuracy (as in, for example: Forstmann
et al., 2008; Ratcliff & Rouder, 1998). These parameters were:

• The width of the starting-point distribution (A).
• Non-decision time (t0), separately for the speed-emphasis

condition and the accuracy-emphasis condition.
• The distance between the upper bound of the starting point

distribution and the response threshold (b − A), separately for
the speed-emphasis and accuracy emphasis conditions.

• Two drift rate distribution location parameters, for the distri-
butions of drift rates in the accumulators corresponding to the
correct and incorrect responses (vc and ve, respectively).

• A drift rate distribution scale parameter (sc) only for the
distribution of drift rates in the accumulator corresponding to
the correct response.

The parameter corresponding to sc in the accumulator repre-
senting the incorrect response was fixed arbitrarily at s = 1, to
satisfy a scaling property of the models (Donkin, Brown, & Heath-
cote, 2009). Namely, if the parameters of the drift rate distribu-
tion are adjusted such that the drift rate distribution is ‘‘scaled’’
by a constant factor, then the other parameters of the model can
be adjusted accordingly to compensate. This situation leaves the
model making identical predictions from very different parame-
ters, which can be problematic in data analysis. For example, in the
conventional LBAmodel with normally distributed drift rates, sup-
pose the mean and standard deviation of the drift rate distribution
were both doubled (which has the effect of doubling all predicted
drift rates). Then, if the start point distribution (A) and decision
threshold (b) are also both doubled, the predictions of the model
are unchanged. This occurs for the obvious reason: the rate growth
in the accumulator has doubled, but the distance to travel has also
doubled, so the finishing time is the same. This indeterminacy is
avoided by arbitrarily fixing one of the parameters.

In our analyses of the truncated normal LBAmodel, we fixed the
standard deviation of the drift rate distribution for the accumulator
corresponding to the incorrect response to 1.0. We took a similar
Table 1
Parameters used to generate synthetic data. Note that the same t0 parameters were
used for all distributions. The v parameter rows correspond to the normal mean,
gamma scale (beta), Fréchet shape (α) and lognormal standard deviation (sigma)
parameters, and the s parameter row corresponds to the normal standard deviation,
gamma shape (alpha), Fréchet scale (mu) and lognormal mean (mu) parameters.

Parameter Drift rate distribution
Truncated normal Fréchet Gamma Lognormal

t0 (speed) 0.15
t0 (accuracy) 0.20
b − A (speed) 0.20 0.57 0.05 1.20
b − A (accuracy) 1.00 1.14 1.00 2.70
vc 3.00 1.86 4.20 1.60
ve 1.50 2.50 2.50 0.50
sc 0.75 2.25 0.70 0.60
A 3.00 1.00 6.00 2.80

approach, fixing the rate distribution’s scale parameter to 1.0,
for both the lognormal and Fréchet variants. Because of the
multiplicative properties of the lognormal distribution, changes
to the mean of the underlying normal distribution (µ) result in
‘‘scaling’’ of the drift rate distribution, so we fixed this parameter
to 1.0 for the accumulator corresponding to the incorrect response.
The Fréchet distribution has a similar property attached to its
scale parameter (also called µ), so we also fixed this parameter to
1.0 for the accumulator corresponding to the incorrect response.
We took a different approach for the gamma distribution, where
we fixed the shape parameter of the drift rate distribution in the
accumulator corresponding to the correct response to 1.0. This
was because preliminary explorations found that the gamma scale
parameter had very similar effects to the normal mean parameter,
whereas the gamma shape parameter had very similar effects to
the normal scale parameter.

For each model variant, we generated 20,000 synthetic deci-
sions using the above parameters. Our use of such a large sample
was intended to eliminate variability due to sampling error, allow-
ing more precise characterisation of the differences between the
models’ predictions due to their different drift rate distributions
alone.

We fit the synthetic data set generated by each of the four LBA
variantswith all of the LBA variants.We usedmaximum-likelihood
estimation with algorithms described in detail by Donkin, Averell
et al. (2009). Fig. 3 shows cumulative distribution functions jointly
over correct and incorrect responses (black and grey, respectively)
for both speed-emphasis and accuracy-emphasis conditions (left
and right pairs of curves in each panel). Columns and rows indicate
the LBA model variant used to generate and fit the synthetic data,
respectively. To illustrate with an example, the lower-left panel
shows the results when synthetic data were generated from an
LBA model variant where drift rates are sampled from a normal
distribution truncated to positive values, and then fit using an LBA
model variant with a lognormal distribution for drift rates. The
left-most set of black circles in that panel show the 10th, 30th,
50th, 70th, and 90th percentiles of the correct responses from
the speed-emphasis condition of the synthetic data, averaged over
participants. These percentiles are plotted against the probability
of jointly observing a correct response in data from that condition,
and the associated response time falling in the bottom 10th, 30th,
50th, 70th, and 90th of the data from that condition. The solid grey
and black lines overlaid illustrate the same quantities calculated
from the maximum-likelihood parameter estimates of the fitting
model.

The panels along themain diagonal of Fig. 3 showalmost perfect
agreement between the synthetic data (symbols) and posterior
predictive data (lines). This is to be expected, showing that, as
for the traditional LBA, in large samples maximum-likelihood
estimation is able to recover parameters values for the variants.
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Fig. 3. Results of cross-fitting themodel variants. Columns indicate which of the four LBAmodel variants was used to generate synthetic data (name of drift rate distribution
for each variant given at top of column). Likewise, rows indicate which variant was used to fit those synthetic data. In each panel, the leftmost pair of solid lines and filled
symbols shows the joint cumulative distribution (plotted by five percentiles: 10, 30, 50, 70, and 90) over correct and incorrect responses for the simulated speed-emphasis
condition, and the rightmost pair show the same for the simulated accuracy-emphasis condition. Percentiles for correct responses are shown by circles, and for errors by
triangles. Overlaid open symbols and dotted lines show the model fits.
We investigate the accuracy of the recovered parameters in these
self-fits below. The off-diagonal panels illustrate that the LBA
model does not appear to suffer from undue flexibility; rather, its
predictions appear quite tightly constrained. This is apparent in the
inability of some model variants to enable a close fit to synthetic
data generated by a different variant. For example, the truncated
normal LBA provided a quite poor fit to data generated from the
lognormal LBA and by the Fréchet LBA.

An important property of the conventional LBA model is its
ability to support accurate parameter estimation. We tested the
new LBA variants on this ability, by examining the four cases
where the same LBA model variant was used to both generate
and fit synthetic data—i.e., the cases shown in the main diagonal
of Fig. 3. Table 2 shows the absolute difference between the
data-generating parameter values and their maximum-likelihood
estimates, expressed as percentages. It is clear that the three new
LBA model variants developed above all support excellent model
recovery, at least for these parameter values and in large samples.

4. Fits to real data

A final test for the three new LBAmodel variants was to account
for real data. Our aim here was not to falsify any particular variant,
because that decision is probably not best made on the basis of a
single data set. Rather, we aimed to establish whether the new LBA
model variants were capable of fitting real data to approximately
the same degree as the conventional LBA, thus validating their
suitability for future investigation. For testing, we used data from
a lexical decision task reported by, Wagenmakers et al. (2008)
(their Experiment 2), in which eight participants each classified
1920 letter strings as either valid or invalid words (words vs. non-
words). There were two within-subject manipulations of interest.
Firstly, half of the blocks of trials contained three times as many
word as non-word stimuli, with the other half of blocks having
Table 2
Absolute bias in recovered parameters (in percent, rounded to nearest integer).

Parameter Drift rate distribution
Truncated normal Fréchet Gamma Lognormal

t0 (speed) 1 1 0 1
t0 (accuracy) 4 1 2 2
b − A (speed) 2 0 2 3
b − A (accuracy) 3 2 5 1
vc 0 0 2 0
ve 1 1 2 1
sc 0 0 2 0
A 0 1 1 2

three times as many non-word as word stimuli. Secondly, the type
ofword stimuli varied randomly from trial to trial in three classes—
high frequency (common) words, low frequency (uncommon)
words, and very low frequency (very rare)words. Higher frequency
words are easier for participants to classify correctly, leading to
higher accuracy rates and shorter response times. Wagenmakers
et al. used this experiment to investigate criterion setting using
the diffusion model, which would be expected to be selectively
influenced by the proportion of words and non-words in each
block.

We fit each model to these data using maximum likelihood
estimation following themethods outlined byDonkin, Averell et al.
(2009). Heathcote and Love (2012) used the same methods to
compare their Lognormal RaceModel to the truncated normal LBA,
and to the conventional LBA. They found the conventional and
truncated normal LBA models fit about equally well to data from
the first experiment reported by Wagenmakers et al. (2008), and
both fit a little better than the Lognormal Race Model. Here we
also used the truncated normal LBA – which once again fit about
as well as the conventional LBA – so that none of the four models
being compared allowed undefined response times.
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Fig. 4. Lexical decision error rates and correspondingmodel fits, both averaged over participants, as a function of stimulus (nw = non-word, forwords hf = high frequency,
lf = low frequency, vlf = very-low frequency) and proportion of word stimuli. Error bars indicated 95% confidence intervals.
For each participant, we estimated a single non-decision time
parameter (t0) and assumed a selective influence of the stimulus
manipulation (i.e., non-words and the various types of words)
on only the two rate parameters. However, we otherwise used
a quite flexible parameterisation for the models in order to see
if they could capture fine details in the data, such as small but
theoretically important effects on the relative speeds of correct and
incorrect responses. Starting point variability (A) and the threshold
(b) parameters could differ both between word and non-word
accumulators and between the proportion conditions, allowing for
differences in response bias. Similarly, we let both rate parameters
vary with proportion condition and with accumulator (i.e., a
different values for the accumulator thatmatches the stimulus and
the one that mismatches).

We explored two solutions to the scaling issue: fixing either
the scale parameter of the rate distributions or themean threshold
parameter, in both cases for just one accumulator in one condition.
Differences in estimation performance (i.e., larger maximised
likelihood values and less variable parameter estimates) reflected
the pairings found in the last section; overall there was slightly
better performance in terms of speed of convergence when fixing
the scale parameter for the truncated normal and gamma variants,
and slightly better performance for the lognormal and Fréchet
variants when fixing the threshold parameter.We report goodness
of fit results for each variant based on the best overall scaling
solution for that variant. The best overall fit, as quantified by
maximised log-likelihood values summed over participants (L),
was given by the gamma (L = 12,710) followed by the positive
LBA (L = 12,511) and lognormal (L = 12,341), with the Fréchet
noticeably worse (L = 10,373).

Fig. 4 shows that all four model variants provided a good ac-
count of the lexical decision accuracy, with all predicted values
fallingwithin the 95% confidence intervals except for one case each
for the truncated normal and gamma models. Fig. 5 quantifies the
description of RT distribution for correct responses by displaying
estimates of the middle of the distribution (i.e., the median RT or
50th percentile) and its fast (10th percentile) and slow (90th per-
centile) tails. Again the fit is quite good, with no predicted values
falling outside the confidence intervals except for the Fréchet 10th
percentile, which is underestimated for allword stimuli in the 25%-
word condition and for non-words in the 75%-word condition.
Fig. 6 enables comparison of correct and error RT, displaying
the median for each. The fits to error RT are noticeably worse
than those to correct RT, which is largely attributable the relative
infrequency of error responses, particularly for high-frequency
words, and for non-words in the 25% condition. The attendant
variability is reflected in large 95% confidence intervals for these
points, and overall all models have at most one or two predicted
points falling outside the 95% confidence intervals for errors.
Importantly, all models capture the general ‘‘crossover’’ pattern,
caused by errors being faster than correct responses for the rarer
stimulus type (i.e., words in the 25% condition and non-words in
the 75% condition) and slower than correct responses for the more
common stimulus type (i.e., non-words in the 25% condition and
words in the 75% condition), with the worst quantitative accounts
provided by the truncated normal and Fréchet variants for non-
words with 75% words. As noted by Wagenmakers et al. (2004),
the crossover pattern follows from the geometry of the evidence
accumulation process. For example, in the 75% word condition,
where there is a bias towards word responses, and hence a smaller
distance to the word than non-word threshold at the start of
accumulation, correct ‘‘word’’ responses (which terminate on the
closer word boundary) are faster than incorrect ‘‘word’’ responses
(which terminate on the more distant nonword boundary). This
reverses in the 25% word condition where the bias is towards non-
words.

5. Discussion

The linear ballistic accumulator model of Brown and Heathcote
(2008) assumes that simple decisions are made by evidence accu-
mulators racing towards a threshold. The LBA model makes a key
simplifying assumption, that the accumulation of evidence is lin-
ear and deterministic. This simplification allows for simple, closed-
form, expressions for the probability density and cumulative
distribution functions of the time taken to reach threshold.

Instead of allowing variability in the evidence accumulation
process within a trial, as assumed – with only a few exceptions
(e.g., Grice, 1972) – by earlier evidence accumulation models, the
LBA model assumes only decision-to-decision variability in the
rate of evidence accumulation and in the amount of evidence
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Fig. 5. Lexical decision RT quantiles (10th, 50th and 90th percentiles) for correct responses and corresponding model fits, both averaged over participants, as a function
of stimulus (nw = non-word, for words hf = high frequency, lf = low frequency, vlf = very-low frequency) and proportion of word stimuli. Error bars indicate 95%
confidence intervals.
Fig. 6. Lexical decisionmedian RT for correct and error responses and correspondingmodel fits, both averaged over participants, as a function of stimulus (nw = non-word,
for words hf = high frequency, lf = low frequency, vlf = very-low frequency) and proportion of word stimuli. Error bars indicate 95% confidence intervals.
accumulated prior to stimulus onset. In the LBA model the distri-
bution assumed for drift rates was normal, so that some decisions
could sample negative drift rates, potentially leading to indeter-
minate finishing times for evidence accumulation. Whether or not
this is a conceptual problem for the model probably depends on
taste, and in practice it has not proven problematic, but, never-
theless, it is worth addressing. Here, we outlined a more general
mathematical treatment for replacing the normal distribution of
drift rates with strictly positive distributions, while still providing
closed-form expressions for the density and cumulative distribu-
tion functions. Our approach requires only that the candidate drift
rate distribution itself has closed-form expressions for its density
and distribution functions, aswell as a differentiable expression for
its mean when truncated to a closed interval.
We illustrated this approach using three new candidate
distributions for drift rates: the Fréchet, gamma and lognormal
distributions. These distributions, alongwith the truncated normal
LBA,were all used to generate synthetic data. The four distributions
lead to quite different distributions of drift rates, as shown in the
left column of Fig. 7. Even so, the strict constraints imposed by
the structure of the LBA model means that the RT distributions
predicted by these drift rates are broadly similar. For example,
the CDFs from the four LBA variants (second-to-right column of
Fig. 7) are difficult to tell apart. Even the hazard functions (right
column) are only qualitatively different in the tails, where the
Fréchet distribution’s hazard function does not decrease. We do
not have great confidence that differences in the hazard functions
could help with empirically distinguishing the model variants, for



56 A. Terry et al. / Journal of Mathematical Psychology 68–69 (2015) 49–58
Fig. 7. Each of the four LBA variants is shown on a different row. The left column shows the distributions of drift rates for two accumulators which race to produce RT
distributions. The other three columns show the following properties of those RT distributions, from left-to-right: the PDF, the CDF, and the hazard function (i.e. PDF

1−CDF ). The
parameters used to generate this plot match the parameters used for the main simulation study.
two reasons. Firstly, informal investigation of the parameter space
revealed that the qualitative patterns of hazard functions in Fig. 7
was not invariant. For some parameter settings, for example, the
hazard function of the Fréchet LBA showed the same increasing-
then-decreasing shape as the other model variants. Secondly,
in applications, the tails of the hazard functions are calculated
from a very small proportion of the data. Such calculations
are inherently noisy, and have proven inconclusive in the past
(e.g. Luce, 1986).

Fits of these four LBA variants showed that all models were able
to account for real data (Wagenmakers et al., 2008, Experiment 2)
adequately, but certainly not identically. Fits of the four models to
data generated by another of the models also showed similarities
and differences among the models, probably representing both
the relative flexibility of the models and perhaps differences in
the tails of the distributions. For example, Fig. 3 shows that the
truncated normal LBA cannot adequately fit data generated by the
Fréchet LBA. The lognormal LBA is so constrained that it could not
adequately fit data by any of the three other variants, at least for
the particular set of parameters investigated.

Clearly, further work is required to assess the generality of
these findings, both with respect to real data and model mimicry.1
In order to facilitate such work, and the broader use of the
new LBA variants, we have added their CDF and PDF equations
to the package rtdists for the open-source statistical language
R (Singmann, Gretton, Brown, & Heathcote, 2015). This package
includes help sections, instructions, and simple examples of how
to use the routines. It is available for download from https://cran.r-
project.org/web/packages/rtdists/.

1 The degree of mimicry is likely to vary in different regions of parameter
space. A reviewer suggested quantifying similarity between distributions using
the Kullback–Leibler distance metric. We agree that this is a very useful way of
summarising findings from the sort of large-scale study that would be necessary
to thoroughly investigate model mimicry.
Consideration of the variability assumptions in decisionmodels
is particularly apposite at the moment, given recent attention
to these assumptions, and to questions about the flexibility and
falsifiability of decision-making models. Jones and Dzhafarov
(2014) analysed a new set of quite different models, in which the
drift rate distributions were allowed to be arbitrarily complex,
and to vary arbitrarily between conditions. Unsurprisingly, these
models are unfalsifiable; they can fit any pattern of data. Our
results do not speak to that conclusion, because we consider
only models constrained in the usual manner, with parametric
assumptions on drift rates. However, our results speak against
the broader implications levelled by Jones and Dzhafarov, that
the variability assumptions of accumulator models make them
difficult to tell apart. The results in Fig. 3 demonstrate that there
exist patterns of results that each LBA model variant cannot
accommodate (see also Heathcote, Brown, &Wagenmakers, 2014).
Evenmore importantly, these patterns of results are not outlandish
or unrealistic, but look a lot like typical data from decision-making
experiments. Secondly, our fits to real data show that the three
new LBAmodel variants all perform adequately, which contradicts
Jones and Dzhafarov’s implication that the particular assumption
of a normal distribution was key in the LBA model’s success.

More generally, our approach illustrates a tractable way
to investigate the properties conferred on the LBA model by
different choices of drift rate distribution. By comparing new
variants that differ only in their distributions of drift rates, the
consequences of each choice of drift rate distribution can be
examined. This approach runs counter to claims made by Jones
and Dzhafarov (2014) regarding the inability to separate out the
effects of different assumptions. In particular, Jones and Dzhafarov
suggested that assumptions about the architecture of the LBA
model (such as linear evidence accumulation) could not be
separated from assumptions about the distribution of drift rates.
Our approach provides another method for investigating exactly
those comparisons.

https://cran.r-project.org/web/packages/rtdists/
https://cran.r-project.org/web/packages/rtdists/
https://cran.r-project.org/web/packages/rtdists/
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5.1. Which is the best distribution for drift rates?

Because of its broad scope, answering the question of which
is the best parametric distribution to assume for drift rates, is
beyond what could be achieved here. Our goal was instead to set
out a method by which alternative drift rate distributions could be
investigated. Deciding which distribution is best is a multi-faceted
problem, because of the many different ways in which we might
define ‘‘best’’. One way in which a distribution might be better
than another is that it might lead to better fits to empirical data.
This, however, requires fitting a wide variety of data sets from
different experimental paradigms. The process of fitting many
different data sets is the best way to validate and test a newmodel,
enabling one to uncover unforeseen problems, and to identify
situations in which the model does and does not fit well. This
comparison will also require careful attention to issues of model
selection. Even though all of the candidate drift rate distributions
wehave consideredhave the samenumber of parameters, theywill
certainly differ in their functional form complexity, which makes
model selection difficult. Even more, they will differ in complexity
depending on how the drift rate distributions’ parameters are
constrained across different conditions or groups in an experiment.
Given these considerations, an appropriate model selection metric
must take into account complexity in a sophisticated manner;
for example metrics based on predictive performance such as the
Bayes factor or cross-validation.

A second way in which one drift rate distribution may be
better than another is that it may be generated by psychologically
meaningful assumptions. That is, there may exist cognitive
theories which give rise to a particular parametric form for drift
rates. For example, the lognormal distribution we have considered
heremight bemotivated by cascaded processing stages (Heathcote
& Love, 2012). Alternatively, the Fréchet distribution might be
motivated by the consideration of Luce-style choice models
(Colonius & Marley, 2014). The methods we outline here provide
a template to help others incorporate into the LBA new drift rate
distributions motivated by different theoretical considerations.
Similar approaches have previously been takenwith categorisation
and absolute identification models (Brown, Marley, Donkin, &
Heathcote, 2008; Nosofsky & Palmeri, 1997).

A third measure of superiority for the drift rate distributions
is based on their statistical properties. A primary use of the LBA
model is in the measurement of cognitive effects, for example be-
tween experimental conditions (Rae, Heathcote, Donkin, Averell,
& Brown, 2014) or between different populations (Ho et al., 2014).
It is important for such applications that the model is able to accu-
rately recover the data-generating parameters.While this has been
demonstrated for the conventional LBA, our analyses suggest that
the new variants investigated heremay perform even better in this
sense. However, further investigations are required to compare the
variants in more realistic sample sizes. Such investigations could
also address the issue of model mimicry in more detail, determin-
ing what sample sizes are required to differentiate among variants
in different parameter regions.

A problem related to the choice between different drift rate dis-
tributions is the precise parameterisation used for eachmodel vari-
ant. In the truncated normal LBA model the drift rate distribution
was characterised by a mean parameter and a standard deviation
parameter. This parameterisation has worked well in many situa-
tions, and allows for a separation of effects on location and scale
of the drift rate distributions. The new proposed drift rate distri-
butions all have two parameters each, but do not all have a natural
location-and-scale parameterisation. Additionally, each new dis-
tribution has at least two different parameterisations that are rela-
tively widely used (such as the rate vs. mean parameterisation for
the gamma distribution). It seems likely that identifying the best
parameterisation for any new distribution will require large scale
empirical investigations.
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Appendix

A.1. Details for gamma distribution

The gamma distribution function at x, with shape parameter α
and scale parameter β is:

G(x; α, β) =

γ

α, x

β


0(α)

.

Here, γ is the lower incomplete gamma function (i.e., γ (x, s) = s
0 ux−1e−udu) and 0 is the standard gamma function, which is just

γ (x, ∞). Eq. (4) gives Z(t) for gamma-distributed drift rates. Its
derivative with respect to time is:
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A.2. Details for Fréchet distribution

The cumulative distribution function for the Fréchet distribu-
tion, with shape parameter α and scale parameter µ is:

p(x; α, µ) = exp


−

x
µ

−α


.

Eq. (5) gives Z(t) for Fréchet-distributed drift rates. Its
derivative with respect to time is:
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A.3. Details for lognormal distribution

The cumulative distribution function for the lognormal distri-
bution, with underlying mean µ and standard deviation σ is:

p(x; µ, σ) = Φ(log(x); µ, σ).

As throughout,Φ(.; µ, σ) indicates the cumulative distribution
function of a normal equation (6) gives Z(t) for lognormally-
distributed drift rates. Its derivative with respect to time is:
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