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Abstract

Previous research suggests that playing action video games improves perfor-
mance on sensory, perceptual, and attentional tasks. For instance, Green,
Pouget, and Bavelier (2010) used the diffusion model to decompose data from
a motion detection task and estimate the contribution of several underlying
psychological processes. Their analysis indicated that playing action video
games leads to faster information processing, reduced response caution, and
no difference in motor responding. Because perceptual learning is generally
thought to be highly context-specific, this transfer from gaming is surpris-
ing and warrants corroborative evidence from a large–scale training study.
We conducted two experiments in which participants practiced either an ac-
tion video game or a cognitive game in five separate, supervised sessions.
Prior to each session and following the last session, participants performed
a perceptual discrimination task. In the second experiment we included a
third condition in which no video games were played at all. Behavioral data
and diffusion model parameters showed similar practice effects for the ac-
tion gamers, the cognitive gamers, and the non–gamers and suggest that, in
contrast to earlier reports, playing action video games does not improve the
speed of information processing in simple perceptual tasks.

Keywords: Action Games, Diffusion Model, Probabilistic Inference, Mov-
ing Dots Task.
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Video games are immensely popular: they are played in 67% of US households and
keep the average gamer occupied for an estimated eight hours a week.1 One of the most
popular genres in video gaming is the so–called action video game. Typically, action video
games revolve around violent battles in war–like situations. Although this type of video
game has been developed for entertainment purposes only, a growing body of research
suggests that playing these games improves performance on a wide range of perceptual and
cognitive tasks (e.g., Green & Bavelier, 2012). This suggestion is surprising — the effects
of perceptual learning tend to be highly context–dependent and therefore fail to generalize
broadly (Fahle, 2005; but see Liu & Weinshall, 2000; Jeter, Dosher, Petrov, & Lu, 2009).
The presence of transfer effects from action video game playing may have profound societal,
financial, and logistic ramifications; for instance, action video game playing may moderate
cognitive decline in the elderly, assist the recovery of stroke patients, or be part of special
needs educational programs. These real–life ramifications mean it is incumbent on the field
to critically assess the existing evidence for the benefit of action video game playing.

In a letter to Nature, Green and Bavelier (2003) discussed advantages of video game
players (VGPs) over non–video game players (NVGPs) in a compatibility task, an enumer-
ation task, a spatial attention task, and an attentional blink task. Furthermore, to rule out
the possible confound of pre–existing differences between VGPs and NVGPs, Green and
Bavelier (2003) conducted a training experiment in which NVGPs were required to play an
action game, Medal of Honor, for one hour per day on ten consecutive days. As a control
condition, another group of NVGPs played Tetris, a game requiring visuo–spatial skills in-
stead. The authors concluded that compared to the control group, the NVGPs trained on
the action game improved more on the enumeration task, the spatial attention task, and
the attentional blink task.

A number of subsequent studies have examined the effect of training on action video
games. For example, in a study by Li, Polat, Makous, and Bavelier (2009), playing ac-
tion video games led to enhanced visual contrast sensitivity whereas playing a non–action
control video game (henceforth referred to as cognitive game) did not. In addition, Green
and Bavelier (2006) showed how training on action video games, compared to training on
cognitive games, improves performance on multiple object tracking tasks.

A further study by Feng, Spence, and Pratt (2007) reported that pre–existing gender
differences in spatial attention disappear after as little as ten hours of action video game
training. Specifically, women benefitted more from training in action video games than did
men. Participants who were trained on a cognitive game showed no such improvements.

Moreover, in a study by Schlickum, Hedman, Enochsson, Kjellin, and Felländer-Tsai
(2009), it was reported that training on action video games improved performance of medical
students on a virtual reality surgery task. Note though that the authors also found some
benefits for training on a cognitive game.

1For these and other statistics on gaming see for instance http://www.esrb.org/about/video-game

-industry-statistics.jsp.

This research was supported by a Vidi grant from the Dutch Organization for Scientific Research (NWO)
and by an American Air Force grant (FA9550-11-1-0130). We are indebted to Marrit Zuure and Merel Keizer
for collecting the data from Experiment 2.
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Finally, video games also appear to benefit the elderly. For instance, a study by
Drew and Waters (1986) showed that playing arcade video games improved manual dexter-
ity, eye–hand coordination, RTs, and other perceptual–motor skills among residents of an
apartment house for elderly citizens. Clark, Lanphear, and Riddick (1987) found that play-
ing video games improved performance of elderly adults in a two–choice stimulus–response
compatibility paradigm.

In sum, video gaming seems to improve performance on a range of different tasks. In
an attempt to pinpoint the locus of the improvement, Green et al. (2010) conducted a study
in which they compared performance of VGPs and NVGPs with the help of two mathe-
matical decision making models: the diffusion model (Ratcliff, 1978; Ratcliff & McKoon,
2008) and a neural decision maker model (Beck et al., 2008). The authors found that VGPs
outperformed NVGPs on a visual motion discrimination task and an auditory discrimina-
tion task. Furthermore, the authors concluded that the advantage of VGPs over NVGPs
is caused by a higher rate of information processing, whereas VGPs had a lower response
caution than NVGPs, and motor processing was unaffected.

At first glance, the evidence in favor of action gaming benefits seems compelling.
However, Boot, Blakely, and Simons (2011) warn against confounds and pitfalls that most
of the above studies fall prey to. Such pitfalls include overt recruiting (creating differing
demand characteristics), unspecified recruiting methods, no tests of perceived similarity
between tasks and games, and possible differential placebo effects. All studies without a
training regimen furthermore suffer from the confound of possible pre–existing differences
between VGPs and NVGPs in aptitude on perceptual learning tasks. The studies that
did use a training paradigm often feature only two measurement occasions (i.e., prior to
training and after all training), a coarse design in which any impact of video game playing
on performance cannot be traced over time as it develops. Finally, many training studies
do not supervise game–play, making it near impossible to confirm the extent to which
participants have fulfilled their training requirements.

Aside from these issues, a number of studies fail to find any reliable benefit of play-
ing video games (Boot, Kramer, Simons, Fabiani, & Gratton, 2008; Irons, Remington, &
McLean, 2011; Murphy & Spencer, 2009). Perhaps most importantly, a recently published
meta–analysis by Powers, Brooks, Aldrich, Palladino, and Alfieri (in press) provides a sum-
mary of effect sizes by game type. They report Cohen’s ds for the benefit of a range of
performance measures for the following game types: action/violent = 0.22 [0.13 – 0.30],
mimetic = 0.95 [0.66 – 1.23], non–action = 0.52 [0.31 – 0.73], and puzzle = 0.30 [0.16 –
0.45]. Thus, according to the meta–analysis, effect sizes for action video games are smaller
than for any other type of video game. It appears, therefore, that the final verdict on the
benefit of action video game playing is still pending.

If action video games are to be used as a training method to improve perceptual and
cognitive abilities, we need to be certain that they result in a tangible benefit; after all, we
do not want to force grandmothers, stroke patients, and children with autism to spend their
time shooting up aliens for nothing. Thus, the purpose of this study is to investigate the two
claims made by Green et al. (2010): Does action video game playing improve performance
on perceptual tasks? And if so, does this benefit reside in a higher rate of information
processing?

In two experiments, we addressed these fundamental issues by administering a train-
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ing design to two or three groups of randomly assigned participants. Two of the groups
played video games under supervision; one group trained on an action video game and one
group trained on a cognitive game. In the second experiment, an additional third group
served as a control. During training, we repeatedly measured performance on a perceptual
discrimination task. We analyze the behavioral data of this task but also examine the data
through the lens of the diffusion model (Ratcliff, 1978). In the next section, we first in-
troduce the diffusion model. Then, we will discuss Experiments 1 and 2 and conclude by
discussing the general ramifications of our results.

The Diffusion Model

In the diffusion model for speeded two–choice tasks (Ratcliff, 1978; Wagenmakers,
2009; van Ravenzwaaij & Oberauer, 2009), stimulus processing is conceptualized as the
accumulation of noisy information over time. A response is initiated when the accumulated
evidence reaches a predefined threshold (Figure 1).
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Figure 1. The diffusion model and its parameters as applied to the moving dots task. Evidence
accumulation begins at z, proceeds over time guided by drift rate v, and halts whenever the upper
or the lower boundary is reached. Boundary separation a quantifies response caution. Observed RT
is an additive combination of the time during which evidence is accumulated and non–decision time
Ter.

The diffusion model assumes that the decision process starts at z, after which infor-
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mation is accumulated with a signal–to–noise ratio that is governed by drift rate ξ, normally
distributed over trials with mean v and standard deviation η.2 Values of ξ near zero pro-
duce long RTs and high error rates. Boundary separation a determines the speed–accuracy
tradeoff; lowering a leads to faster RTs at the cost of a higher error rate. Together, these
parameters generate a distribution of decision times DT . The observed RT, however, also
consists of stimulus–nonspecific components such as response preparation and motor exe-
cution, which together make up non–decision time Ter. The model assumes that Ter simply
shifts the distribution of DT , such that RT = DT + Ter (Luce, 1986). The model spec-
ification is completed by including parameters that specify across–trial range in starting
point, sz, and non–decision time, st (Ratcliff & Tuerlinckx, 2002). Hence, the four key
components of the diffusion model are (1) the speed of information processing, quantified
by mean drift rate v; (2) response caution, quantified by boundary separation a; (3) a priori
bias, quantified by starting point z; and (4) mean non–decision time, quantified by Ter.

The diffusion model has been applied to a wide range of experimental paradigms,
including perceptual discrimination, letter identification, lexical decision, recognition mem-
ory, and signal detection (e.g., Ratcliff, 1978; Ratcliff, Gomez, & McKoon, 2004; Ratcliff,
Thapar, & McKoon, 2006; Klauer, Voss, Schmitz, & Teige-Mocigemba, 2007; Wagenmakers,
Ratcliff, Gomez, & McKoon, 2008; van Ravenzwaaij, van der Maas, & Wagenmakers, 2011;
Ratcliff, Thapar, & McKoon, 2010). Recently, the diffusion model has also been applied in
clinical settings featuring sleep deprivation (Ratcliff & van Dongen, 2009), anxiety (White,
Ratcliff, Vasey, & McKoon, 2010), and hypoglycemia (Geddes et al., 2010). The model has
also been extensively applied in the neurosciences (Ratcliff, Hasegawa, Hasegawa, Smith,
& Segraves, 2007; Philiastides, Ratcliff, & Sajda, 2006; Mulder, Wagenmakers, Ratcliff,
Boekel, & Forstmann, 2012).

The advantages of a diffusion model analysis are twofold. First, the model takes into
account entire RT distributions, both for correct and incorrect responses. This contrasts
with a traditional analysis that considers only the mean RT for correct responses, and
perhaps error rate, but ignores entirely the shape of the RT distributions and the speed of
error responses. Second, the model allows researchers to decompose observed RTs and error
rates into latent psychological processes such as processing speed and response caution. In
the traditional analysis no attempt is made to explain the observed data by means of a
psychologically plausible process model.

In their study on the effects of action video game playing on RT tasks, Green et al.
(2010) report an increase in drift rate and a decrease in boundary separation for participants
who practiced action games relative to participants who practiced cognitive games. Below
we report two experiments that feature supervised video game play, repeated measurements
of perceptual task performance, and a diffusion model decomposition of the data.

Experiment 1

As a first test of the results of Green et al. (2010), we set out to compare NVGPs in
an action game condition versus NVGPs in a cognitive game condition. Both groups were

2Mathematically, the change in evidence X is described by a stochastic differential equation dX(t) =
ξ · dt + s · dW (t), where s · dW (t) represents the Wiener noise process with mean 0 and variance s2 · dt.
Parameter s is a scaling parameter and is usually set to 0.1.
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trained on video games for ten hours, divided equally over five separate sessions. Prior to
every two hours of gaming and in a sixth and final behavioral session, participants performed
a perceptual discrimination task. See Figure 2 for a graphical depiction of the events in all
six sessions.

Participants

Twenty students from the University of Amsterdam (18 women, 2 men), aged 18 to
25 (mean = 20.6, SD = 2.4), participated on six separate days in exchange for course credit
or a monetary reward of 112 euros. Participants were screened for gaming experience. In
order to qualify for participation, students could not play video games for more than two
hours per week on average at the present and for no more than five hours per week on
average during any time in their life. Participants were randomly assigned to either the
“action” or the “cognitive” condition, under the restriction that each condition contain ten
participants.

Materials

Video Games. In the action condition, participants played Unreal Tournament 2004.
This game is a so–called first–person shooter. The aim of the protagonist is to navigate a
three–dimensional world using keyboard and mouse, shooting scores of enemies and avoiding
to be shot himself. This game requires response speed, anticipation, and planning. In the
cognitive condition, participants played The Sims 2. This game is a strategy game. The
aim of the protagonist is to live a virtual life and manage its basic “requirements” such as
fulfilling social obligations, obtaining food, and keeping a job. This game does not rely on
response speed, or at least not to the extent that Unreal Tournament 2004 does.

Moving Dots Task. Each of the six sessions featured a moving dots task (Ball &
Sekuler, 1982; Newsome & Paré, 1988; Britten, Shadlen, Newsome, & Movshon, 1992)
with two blocks of 200 trials each. On every trial, the stimulus consisted of 120 dots, 40
of which moved coherently and 80 of which moved randomly. After each 50–ms frame,
the 40 coherently moving dots moved 1 pixel in the target direction. The other 80 dots
were relocated randomly. On the subsequent frame, each dot might switch roles, with the
constraint that there were always 40 dots moving coherently between a given set of frames.
The moving dots stimulus gives the impression that the cloud of dots is systematically
moving or turning in one direction, even though the cloud remains centered on the screen.
Each dot consisted of 3 by 3 pixels, and the entire cloud of dots had a diameter of 250
pixels. Dots were randomly distributed over this pixel range. Participants indicated their
response by pressing one of two buttons on an external device with their left or right index
finger.

Immediately prior to each stimulus, a fixation cross was displayed for a random in-
terval of 500, 800, 1000 or 1200 ms. Participants had 1500 ms to view the stimulus and
give a response. The stimulus disappeared as soon as a response was made. If, for a given
trial, the participant’s response was slower than 1000 ms, participants saw the message “te
langzaam” (too slow) at the end of the trial. In contrast to Experiment 2, coherence level
was not calibrated on an individual basis.
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Procedure

Upon entering, if it was the participant’s first session, he or she received a general
instruction about the procedure and signed an informed consent form. The participant
then completed the moving dots task and a lexical decision task.3 The moving dots task
and the lexical decision task each took approximately 20 minutes to complete. Then, in all
but the sixth and final session, the participant played the video game (action or cognitive,
depending on the condition) for an hour. An experimenter was in the room while the
participants played the action video games, had the computer screen in sight at all times,
and was available for assistance in the unlikely event a participant got stuck (this rarely
happened). Following the first hour of gaming, the participant had a break of 10 to 15
minutes, after which he or she played the video game for a second hour, completing the
session. The first, second, third, fourth, and fifth session all took approximately three
hours each. For the sixth session, the participant first completed the moving dots task
and the lexical decision task, and then filled out a payment form. The sixth session took
approximately one hour. In total, all sessions took approximately 16 hours per participant,
10 hours of which were spent gaming.

Session 1
Instructions (10 min)

Dots (20 min)

LD (20 min)

Gaming (120 min)

Session 2
Dots (20 min)

LD (20 min)

Gaming (120 min)

Session 3
Dots (20 min)

LD (20 min)

Gaming (120 min)

Session 4

Dots (20 min)

LD (20 min)

Gaming (120 min)

Session 5

Dots (20 min)

LD (20 min)

Gaming (120 min)

Session 6

Dots (20 min)

LD (20 min)

Figure 2. A flowchart of the design for Experiment 1. Dots = Moving Dots Task, LD = Lexical
Decision Task. Supervised sessions took place on different days, spanning at most seven days.

3For consistency with Experiment 2, only the results for the moving dots task are reported. The results for
the lexical decision task may be found in the online appendix, available at http://www.donvanravenzwaaij
.com/Papers.html. Compared to the cognitive game, playing the action video game did not lead to improved
performance on the lexical decision task.
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Results

The next three subsections present the behavioral results (mean RT and accuracy),
the diffusion modeling decomposition, and the diffusion model fit.4 For the remainder of the
statistical analyses, we report not only conventional p–values but also Bayes factors (e.g.,
Jeffreys, 1961; Kass & Raftery, 1995; Hoijtink, Klugkist, & Boelen, 2008). Bayes factors
represent “the primary tool used in Bayesian inference for hypothesis testing and model
selection” (Berger, 2006, p. 378); in contrast to p–values, Bayes factors allow researchers
to quantify evidence in favor of the null hypothesis vis–a–vis the alternative hypothesis.
For instance, when the Bayes factor BF01 = 10 the observed data are 10 times more likely
to have occurred under H0 than under H1. When BF01 = 1/5 = 0.20 the observed data
are 5 times more likely to have occurred under H1 than under H0. In the following, Bayes
factors for analysis of variance are based on the BIC approximation (e.g., Wagenmakers,
2007; Masson, 2011), and Bayes factors for t–tests are based on the default Bayesian t–test
proposed by Rouder, Speckman, Sun, Morey, and Iverson (2009).

Behavioral Results

One participant withdrew from the experiment after the first session and was replaced.
For each participant, we excluded all RTs below 275 ms, as these were likely to be guesses.
This led to the exclusion of 0.1% of all RTs and did not affect the results.

Figure 3 shows the within–subject effects for mean RT and accuracy. Across condi-
tions, participants’ mean RTs shortened in subsequent sessions, as confirmed by the pres-
ence of a negative linear trend over sessions on mean RT (F (1, 96) = 53.0, p < .001,
BF01 = 2.8 · 10−9). Thus, practice on the moving dots task resulted in faster respond-
ing. Importantly, this session effect for mean RT did not interact with gaming condition
(F (1, 96) = 0.26, p > .05, BF01 = 8.75). From the first to the last session, the overall
speedup in mean RT was 51 milliseconds for the action condition and 59 milliseconds for
the cognitive condition.

In addition to speeding up, participants also made more mistakes in subsequent ses-
sions across conditions (linear trend: F (1, 96) = 6.6, p < .05, BF01 = 0.37). There
was no evidence for an interaction between session and gaming condition for accuracy
(F (1, 96) = 1.8, p > .05, BF01 = 3.86).

In sum, practice on the moving dots task decreased mean RT for both the action and
the cognitive condition. Playing the action video game did not result in better performance
compared to playing the cognitive video game. Response accuracy decreased slightly over
sessions, hinting at the possibility that participants became less cautious as they improved
with practice (see also Dutilh, Wagenmakers, Vandekerckhove, & Tuerlinckx, 2009). In
order to quantify the psychological factors that drive the observed effects we now turn to a
diffusion model decomposition.

Diffusion Model Decomposition

The diffusion model was fit to the data using the DMAT software package
(Vandekerckhove & Tuerlinckx, 2007), which minimizes a negative multinomial log–
likelihood function. Each participant was fit separately. We fixed starting point z to be half

4Data from both experiments is available at http://www.donvanravenzwaaij.com/Papers.html.
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Figure 3. The within–subject effects of the action condition (top panels) and the cognitive condition
(bottom panels) on mean RT (left panels) and response accuracy (right panels) for the moving dots
task from Experiment 1. Error bars represent 95% confidence intervals.

of boundary separation a, as there was no reason to expect a bias for either the left or right
direction in the moving dots stimuli. We estimated a separate mean drift rate v, boundary
separation a, and non–decision time Ter for each session. Furthermore, we constrained the
standard deviation of drift rate η, range of starting point sz, and range of non–decision time
st to be equal across sessions.

The diffusion model captured the error rates okay for the cognitive condition and
somewhat poorly for the action condition. The RTs were captured well on average.5 Figure 4
shows the within–subject effects for drift rate v, boundary separation a, and non–decision
time Ter. Across conditions, participants processed information faster in subsequent ses-
sions, but the effect leveled off for later sessions; this visual impression is confirmed by the
presence of a positive linear trend over sessions for drift rate v (F (1, 96) = 24.7, p < .001,
BF01 = 1.1 ·10−4). From the first to the last session, the overall training effect on drift rate
v was 0.13 for the action condition and 0.23 for the cognitive condition. Importantly, there
was no interaction between session and gaming condition for drift rate (F (1, 96) = 0.77,
p > .05, BF01 = 6.71).

For boundary separation a, there was no evidence for a linear trend over sessions

5For details, see Figure 3 of the online appendix.
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across conditions (F (1, 96) = 3.5, p > .05, BF01 = 1.71) and there was no evidence for an
interaction between session and gaming condition (F (1, 96) = 0.03, p > .05, BF01 = 9.82).
For non–decision time Ter there was also no evidence for the presence of a linear trend over
sessions across conditions (F (1, 96) = 0.64, p > .05, BF01 = 7.16) and no evidence for an
interaction between session and gaming condition (F (1, 96) = 0.09, p > .05, BF01 = 9.59).
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Figure 4. The within–subject effects of the action condition (top panels) and the cognitive condition
(bottom panels) on drift rate v (left panels), boundary separation a (middle panels), and non–
decision time Ter (right panels) for the moving dots task from Experiment 1. Error bars represent
95% confidence intervals.

In sum, practice on the moving dots task increased the rate of information processing.
Response caution and non–decision time were unaffected. The practice–induced increase
in the rate of information processing was unaffected by the type of game played. Hence,
contrary to the results by Green et al. (2010), playing action video games did not yield an
increased benefit on information processing.6

6The conclusions from the diffusion model parameters can only be relied upon, however, when the model
provides a satisfactory fit to the data. In order to reassure the reader that the diffusion model gives a good
description of the data, we present model predictives in the online appendix.
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Interim Conclusion

Experiment 1 showed no benefit of action video game playing, neither in the behav-
ioral data nor in the diffusion model parameters. Hence, the results from Experiment 1
are at odds with the findings from Green et al. (2010). However, one may argue that we
failed to find the effect because ten hours of game–play training are insufficient to elicit a
reliable effect. Of course, earlier training studies also used ten hours of game–play (e.g.,
Green & Bavelier, 2003; Feng et al., 2007, see Powers et al., in press for a review). More-
over, Experiment 1 showed not even a hint of an effect, making its hypothetical appearance
after additional training hours somewhat implausible. Nevertheless, we decided to conduct
a second experiment in which we doubled the number of hours spent gaming, for both the
action and the cognitive game condition. To verify that participants actually improved in
the action video game, we monitored their skill level. As an additional safeguard, we also
included a no–gaming condition which served as a baseline for both the action and the
cognitive game condition. We also calibrated the moving dots task to each individual to
produce response accuracies that were not at ceiling. In addition, we tested 45 participants
instead of 20 and we increased the number of moving dots trials in each session from 400
in Experiment 1 to 1000 in Experiment 2. Finally, in an attempt to reduce the impact
of potential confounds due to differential expectations (e.g., Boot et al., 2011), we told
participants a believable cover story as to the goal of the experiment.

Experiment 2

As a second test of the results of Green et al. (2010), we set out to compare NVGPs in
an action game condition to NVGPs in a cognitive game condition and to NVGPs in a no–
gaming condition. The action and cognitive groups were trained on video games for twenty
hours, divided equally over five separate sessions. Prior to every four hours of gaming and
in a sixth and final behavioral session, participants performed a perceptual discrimination
task. In the first session, we calibrated the coherence level of the moving dots task to obtain
comparable and off-ceiling response accuracies for each participant. On two separate days,
one prior to the first session and one after the final session, participants underwent a diffusion
tensor imaging scan. Both of these scans were compared to examine improvements with
practice on the moving dots task. The results of these scans are unrelated to the video
gaming and will be reported elsewhere. See Figure 5 for a graphical depiction of the events
in all six sessions.

Participants

Forty–five students from the University of Amsterdam (19 women, 24 men), aged
17 to 24 (mean = 20, SD = 1.8), participated on six separate days in exchange for course
credit and a monetary reward of 63 euros. Participants were screened for gaming experience.
In order to qualify for participation, students could not play video games for more than
one hour per week on average at the present and for no more than ten hours per week
on average during any time in their life. Participants were randomly assigned to either
the “action”, the “cognitive”, or the “control” condition, under the restriction that each
condition contained fifteen participants. As pointed out by Boot et al. (2011), participants in
the action condition may expect to improve on the experimental tasks, whereas participants
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DTI Scan 1 Session 1

Instructions (10 min)

Calibration (20 min)

Dots (40 min)

Gaming (240 min)

Session 2

Dots (40 min)

Gaming (240 min)

Session 3

Dots (40 min)

Gaming (240 min)

Session 4

Dots (40 min)

Gaming (240 min)

Session 5

Dots (40 min)

Gaming (240 min)

Session 6

Dots (40 min)

DTI Scan 2

Figure 5. A flowchart of the design for Experiment 2. Calibration = Practice and calibration block
for the moving dots task, Dots = Moving dots task. Supervised sessions took place on different days,
spanning exactly seven days. In the control condition, participants terminated their session upon
completion of the moving dots task.

in the cognitive condition may not. This confound has the potential to create spurious
benefits from action video–gaming, and in order to attenuate its influence we (falsely)
informed participants that they participated in an experiment that examined the effect of
a perceptual task on their performance in video game playing.

Materials

Video Games. See the section “Video Games” in Experiment 1 for details.

Moving Dots Task. For Experiment 2 we modified the moving dots task used in
Experiment 1. Specifically, we calibrated task difficulty (i.e., coherence level) and increased
the number of trials. For calibration purposes, each participant performed a practice block
of 400 trials with stimuli of varying difficulty (i.e., 0%, 10%, 20%, 40%, and 80% coherence,
for 80 trials each in a randomly interleaved order). The mean RTs and accuracy data
from this practice block were then fit with the Palmer diffusion model where drift rate is
constrained to be proportional to the coherence level (Palmer, Huk, & Shadlen, 2005). The
psychometric curve predicted by the Palmer diffusion model was then used to determine
for each participant the coherence level that corresponds to 75% accuracy. This coherence
level was then fixed throughout all of the experimental blocks.

Participants had 2000 ms to view the stimulus and give a response. The stimulus
disappeared as soon as a response was made. If, for a given trial, the participant’s response
was slower than 2000 ms, participants saw the message “No Response” at the end of the
trial. If the participant’s response was faster than 200 ms, participants saw the message
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“Too Fast”. The fixation cross was present on screen at all times. The moving dots task
took approximately 40 minutes to complete.

Procedure

The procedure in Experiment 2 differed from that of Experiment 1 in a number of
ways. Firstly, the initial session commenced with a 400–trial moving dots practice block
that was used for the individual calibration of task difficulty. After completing this practice
block participants had a five minute break, during which the experimenter set up the main
task. Secondly, the moving dots task used in sessions one through six consisted of 1000
trials during which participants had three self–paced breaks after 250, 500, and 750 trials.
Thirdly, in sessions one through five, participants played the video game for four hours
instead of two (except in the control condition in which each session ended as soon as the
participant completed the moving dots task). Participants had three self–paced breaks after
each hour of gaming. In the action condition, the difficulty level was adapted to the ability
of the participant.7 Finally, Experiment 2 did not feature a lexical decision task.

Results

There were no significant gender main effects or interactions with condition for mean
RT or accuracy. In what follows, we have collapsed across gender in our presentation of
the results. Figure 6 shows the improvement in difficulty level over consecutive games,
averaged over participants. Note that levels range from 1, “Novice”, to 8, “Godlike”. The
figure shows substantial training effects for the first 10 hours (up to approximately game
number 50, depending on the individual), and a substantially reduced training effect on
the action video game in the second 10 hours of gaming. This law of diminished returns is
characteristic of virtually all human learning (e.g., Newell & Rosenbloom, 1981).

The next three subsections present the behavioral results (mean RT and accuracy),
the diffusion modeling decomposition, and the diffusion model fit.

Behavioral Results

One participant from the action condition and one participant from the cognitive
condition withdrew their participation. For each participant, we excluded all RTs below
275 ms, as these were likely to be guesses. This led to the exclusion of 0.7% of all RTs and
did not affect the results.

Figure 7 shows the within–subject effects for mean RT and accuracy. Across condi-
tions, participants’ mean RTs shortened in subsequent sessions, as confirmed by the pres-
ence of a negative linear trend over sessions on mean RT (F (1, 209) = 60.5, p < .001,
BF01 = 2.0 · 10−11). Thus, practice on the moving dots task resulted in faster re-
sponding. Interestingly, this session effect for mean RT interacted with gaming condition
(F (2, 209) = 6.8, p < .01, BF01 = 0.24), but not in the expected direction: as the number
of sessions increases, participants speeded up both in the cognitive game condition (t(13) =
5.0, p < .001, 95% c.i. = [105.4 – 266.8], BF01 = 0.01) and in the no–game condition (t(14)

7Participants continuously played in “Deathmatch” mode. If the participant had more kills than any of
the AI opponents after 10 minutes of play, the experimenter increased the difficulty level by one, and if the
participant did not, the experimenter decreased the difficulty level by one.



NO PERCEPTUAL BENEFITS OF ACTION VIDEO GAMING 14

1

2

3

4

5

6

1 20 40 60 80 97

Level

Games

Figure 6. Average skill level of participants over consecutive games (10 minutes per game). The
dark line represents the best fitting linear model through the log–transformed skill level data, with
the grey area representing the standard error of the mean data points. Most participants were unable
to play more than 97 games, given the time required for starting up new games, bathroom breaks,
etc.

= 3.9, p < .01, 95% c.i. = [52.1 – 176.5], BF01 = 0.04) whereas they did not speed up in
the action game condition (t(13) = 1.4, p > .05, 95% c.i. = [-17.9 – 79.2], BF01 = 2.11).
From the first to the last session, the overall session effect on mean RT was 31 milliseconds
for the action condition, 186 milliseconds for the cognitive condition, and 114 milliseconds
for the no–game condition.

In contrast to Experiment 1, participants in Experiment 2 became more accurate
in subsequent sessions across conditions; there was a significant positive linear trend over
sessions for accuracy (F (1, 209) = 179.3, p < .001, BF01 = 1.8 · 10−28). This discrepancy is
most likely due to the individual calibration of task difficulty. There was no evidence for an
interaction between session and gaming condition for accuracy (F (2, 209) = 0.97, p > .05,
BF01 = 130.3) – in fact, the Bayes factor suggests that there is strong evidence in favor of
the absence of such an interaction.

In sum, practice on the moving dots task led to faster performance for the no–game
condition and the cognitive game condition, but not for the action game condition. This
result is at odds with that reported by Green et al. (2010). In order to quantify the
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Figure 7. The within–subject effects of the action condition (left panels), the cognitive condition
(middle panels), and the no–game conditions (right panels) on mean RT (top panels) and response
accuracy (bottom panels) for the moving dots task from Experiment 2. Error bars represent 95%
confidence intervals.

psychological factors that drive the observed effects we now turn to a diffusion model de-
composition.

Diffusion Model Decomposition

The diffusion model analyses followed the outline provided under Experiment 1 above.
The diffusion model captured the data well.8 Figure 8 shows the within–subject effects
for drift rate v, boundary separation a, and non–decision time Ter. Across conditions,
participants processed information faster in subsequent sessions; this visual impression is
confirmed by the presence of a positive linear trend over sessions for drift rate v (F (1, 209) =
201.1, p < .001, BF01 = 5.0 · 10−31).9 For all conditions the increase in drift rate was about
0.1. Importantly, there was no interaction between session and gaming condition for drift
rate (F (2, 209) = 2.2, p > .05, BF01 = 23.5).

For boundary separation a, there was no evidence for a linear trend over sessions across

8For the detailed model predictives, see Figure 4 of the online appendix.
9Note that the absolute size of the drift rates is lower than for Experiment 1, a phenomenon that reflects

that the moving dots paradigm for Experiment 2 was more difficult in order to prevent ceiling effects.
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conditions (F (1, 209) = 2.3, p > .05, BF01 = 4.50). There was a significant interaction
between session and game condition (F (2, 209) = 9.3, p < .001, BF01 = 0.02); boundary
separation a was increasing over sessions in the action condition (t(13) = 2.4, p < .05, 95%
c.i. = [0.002 – 0.028], BF01 = 0.51), whereas boundary separation did not change in the
cognitive condition (t(13) = 2.0, p > .05, 95% c.i. = [-0.001 – 0.030], BF01 = 0.95) nor in
the no–game condition (t(14) = -1.8, p > .05, 95% c.i. = [-0.039 – 0.003], BF01 = 1.21).
In other words, participants became more cautious in subsequent sessions for the action
condition. Note that all Bayes factors for these specific comparisons suggest the evidence
is ambiguous.

For non–decision time Ter there was no linear trend over sessions across conditions
(F (1, 209) = 0.28, p > .05, BF01 = 12.76) and no evidence for an interaction between
session and gaming condition (F (2, 209) = 1.8, p > .05, BF01 = 33.95).
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Figure 8. The within–subject effects of the action condition (left panels), the cognitive condition
(middle panels), and the no–game conditions (right panels) on drift rate v (top panels), boundary
separation a (middle panels), and non–decision time Ter (bottom panels) for the moving dots task
from Experiment 2. Error bars represent 95% confidence intervals.

In sum, practicing the moving dots task led to benefits in terms of mean RT for
the no–game and cognitive game conditions, bot not for the action game conditions. In
addition, practicing the moving dots task led to an increase in response accuracy for all
three conditions. When viewed through the lens of the diffusion model, it became clear that
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these practice effects were caused by an increase in the speed of information processing.
The benefits of practice were no greater for participants playing action video games

than for participants playing cognitive games or for participants who did not play video
games at all, a statement that holds true both for the behavioral measures and for the
diffusion model drift rate parameters.

Conclusion

Two training experiments showed that performance on a perceptual discrimination
task improves with practice. This is hardly surprising. More noteworthy is that we failed
to find any performance benefit for participants who played an action video game compared
to participants who played a cognitive game or no game at all. Neither the behavioral data
nor a diffusion model analysis revealed even a trace of a performance increment due to
playing action video games. The Bayesian analyses supported the null hypothesis of equal
performance for all gaming conditions.

So why do we fail to find a gaming–specific benefit on the moving dots task? Was the
amount of hours playing video games insufficient? Recall that our participants played for
10 hours in Experiment 1 and for 20 hours in Experiment 2. The training study of Green
et al. (2010), however, employed 50 hours of video game training; perhaps the difference is
due to these last 30 hours?

There are multiple reasons why this alternative explanation is unlikely. First and
foremost, a recent meta–analysis by Powers et al. (in press) concluded: “In true experiments,
effect sizes were comparable across studies utilizing varying amounts of training (under 10 h
vs. over 10 h), which suggests that learners quickly adapt cognitive processes to the design
features of specific games, and may not need extensive practice to accrue training benefits.”
Second, as underscored by Powers et al. (in press), the number of training hours in our
two experiments is average and high, respectively. Third, the critique is valid only when
the effect is of a rather special nature, namely: (1) it does not manifest itself at all during
the first 20 hours, and then develops quite strongly over the next 30 hours; and (2) it is
somehow different from other effects of gaming, because, in general, “length of training (...)
failed to moderate the effects” (Powers et al., in press).

It may be argued that the repeated testing on the moving dots task produced such
a strong practice effect that it swamped any improvements due to the gaming itself. We
believe this interpretation of our results to be implausible. There are no indications of a
ceiling effect in the data from our second experiment. Testing six times instead of two
greatly increases the power to detect a beneficial gaming effect, should it exist (see section
“Power Analysis Experiment 2” of the online appendix for a demonstration). On top of that,
if the power of our design had been too low, the Bayesian analyses would have indicated
ambivalent evidence. However, we found clear evidence in favor of the null hypothesis.

Nevertheless, one could argue that the gaming transfer effects are so fragile and
specific that they are only present when the target task has received little practice. For
instance, assume that test–retest benefits are of two kinds, (a) improvement in visuo–
perceptual processing (unfolding over a long time scale); and (b) improvement in pressing
response buttons (unfolding over a very short time scale). It could possibly be the case that
the transfer effect from gaming influences only the peripheral process (b), and that process
(b) is at ceiling relatively quickly.
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Of course, this account is speculative, contradicts prior theorizing in which the benefit
is thought to represent general facilitation of cognitive processing, and raises the question
of the relevance of the transfer effect in practical application. So even if this alternative
account is true, it would render the transfer effect of gaming rather uninteresting, as it may
represent a temporary adjustment of a peripheral response process rather than a change in
cognitive processing.

Our findings contradict the claim that action–video game playing selectively improves
cognitive processing as argued by Green et al. (2010). It is possible that overt recruiting,
unspecified recruiting methods, or the lack of supervised game–play has caused the results
of Green et al. (2010) to be different from ours see e.g., Boot et al. (2011). However, our
findings are consistent with the outcome of the recent meta–analysis by Powers et al. (in
press), who concluded that “In true experiments, action/violent game training was no more
effective than game training utilizing nonaction or puzzle games, but mimetic games showed
large effects.” Powers et al. (in press) did conclude that there is a reliable transfer effect of
gaming in general, and this is inconsistent with our result from Experiment 2 – our control
group improved just as much as the two groups of gamers.

In order to resolve the contradictory findings it may be essential to engage in ad-
versarial collaborations or at least state the analysis plan in advance of data collection
(Chambers, 2013; Wagenmakers, Wetzels, Borsboom, van der Maas, & Kievit, 2012; Wolfe,
2013). Furthermore, we suggest that researchers who plan to study the effects of video
game playing consider the following guidelines:

1. Despite the considerable effort required, conduct a training study on non–gamers
rather than compare gamers to non–gamers. Training studies eliminate confounds due to
pre-existing differences between gamers and non–gamers.

2. Design experiments with sufficient power. By testing many participants and includ-
ing many trials for the psychological task at hand you increase the chances of confidently
confirming or disconfirming the effects of interest.

3. Calibrate your psychological task on an individual basis to ensure error rates that
are sizable and similar across participants. Training effects on response accuracy are easier
to detect when accuracy is not near ceiling. A sufficient number of errors also benefits RT
modeling with the diffusion model (e.g., compare the model predictives for Experiment 1
and Experiment 2).

4. Use Bayes factors to quantify evidence. Only by using Bayes factors can researchers
quantify the evidence favoring the null hypothesis.

5. Use the diffusion model to decompose the behavioral effects in their underlying
psychological processes such as speed of information processing, response caution, and non–
decision time.

We find the claim enticing that people can boost their cognitive capacities by playing
violent action video games. However, our result urge caution and suggest that before the
video games find application, a series of purely confirmatory experiments is in order. We
hope that our experiments will encourage such confirmatory work.
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Newsome, W. T., & Paré, E. B. (1988). A selective impairment of motion perception following
lesions of the middle temporal visual area (MT). The Journal of Neuroscience, 8 , 2201–2211.

Palmer, J., Huk, A. C., & Shadlen, M. N. (2005). The effect of stimulus strength on the speed and
accuracy of a perceptual decision. Journal of Vision, 5 , 376–404.

Philiastides, M. G., Ratcliff, R., & Sajda, P. (2006). Neural representation of task difficulty and
decision–making during perceptual categorization: A timing diagram. Journal of Neuro-
science, 26 , 8965–8975.

Powers, K. L., Brooks, P. J., Aldrich, N. J., Palladino, M. A., & Alfieri, L. (in press). Effects
of video–game play on information processing: A meta–analytic investigation. Psychonomic
Bulletin & Review .

Ratcliff, R. (1978). A theory of memory retrieval. Psychological Review , 85 , 59–108.

Ratcliff, R., Gomez, P., & McKoon, G. (2004). Diffusion model account of lexical decision. Psycho-
logical Review , 111 , 159–182.

Ratcliff, R., Hasegawa, Y. T., Hasegawa, Y. P., Smith, P. L., & Segraves, M. A. (2007). Dual diffusion
model for single–cell recording data from the superior colliculus in a brightness–discrimination
task. Journal of Neurophysiology , 97 , 1756–1774.

Ratcliff, R., & McKoon, G. (2008). The diffusion decision model: Theory and data for two–choice
decision tasks. Neural Computation, 20 , 873–922.

Ratcliff, R., Thapar, A., & McKoon, G. (2006). Aging, practice, and perceptual tasks: A diffusion
model analysis. Psychology and Aging , 21 , 353–371.

Ratcliff, R., Thapar, A., & McKoon, G. (2010). Individual differences, aging, and IQ in two–choice
tasks. Cognitive Psychology , 60 , 127–157.

Ratcliff, R., & Tuerlinckx, F. (2002). Estimating parameters of the diffusion model: Approaches to
dealing with contaminant reaction times and parameter variability. Psychonomic Bulletin &
Review , 9 , 438–481.

Ratcliff, R., & van Dongen, H. P. A. (2009). Sleep deprivation affects multiple distinct cognitive
processes. Psychonomic Bulletin & Review , 16 , 742–751.

Rouder, J. N., Speckman, P. L., Sun, D., Morey, R. D., & Iverson, G. (2009). Bayesian t–tests for
accepting and rejecting the null hypothesis. Psychonomic Bulletin & Review , 16 , 225–237.

Schlickum, M. K., Hedman, L., Enochsson, L., Kjellin, A., & Felländer-Tsai, L. (2009). Systematic
video game training in Surgical novices improves performance in virtual reality endoscopic
surgical simulators: A prospective randomized study. World Journal of Surgery , 33 , 2360–
2367.



NO PERCEPTUAL BENEFITS OF ACTION VIDEO GAMING 21

van Ravenzwaaij, D., & Oberauer, K. (2009). How to use the diffusion model: Parameter recovery of
three methods: EZ, fast-dm, and DMAT. Journal of Mathematical Psychology , 53 , 463–473.

van Ravenzwaaij, D., van der Maas, H. L. J., & Wagenmakers, E.-J. (2011). Does the Name–Race
Implicit Association Test Measure Racial Prejudice? Experimental Psychology , 58 , 271–277.

Vandekerckhove, J., & Tuerlinckx, F. (2007). Fitting the Ratcliff diffusion model to experimental
data. Psychonomic Bulletin & Review , 14 , 1011–1026.

Wagenmakers, E.-J. (2007). A practical solution to the pervasive problems of p-values. Psychonomic
Bulletin & Review , 14 , 779–804.

Wagenmakers, E.-J. (2009). Methodological and empirical developments for the Ratcliff diffusion
model of response times and accuracy. European Journal of Cognitive Psychology , 21 , 641–
671.

Wagenmakers, E.-J., Ratcliff, R., Gomez, P., & McKoon, G. (2008). A diffusion model account of
criterion shifts in the lexical decision task. Journal of Memory and Language, 58 , 140–159.

Wagenmakers, E.-J., Wetzels, R., Borsboom, D., van der Maas, H. L. J., & Kievit, R. A. (2012). An
agenda for purely confirmatory research. Perspectives on Psychological Science, 7 , 627–633.

White, C. N., Ratcliff, R., Vasey, M. W., & McKoon, G. (2010). Using diffusion models to understand
clinical disorders. Journal of Mathematical Psychology , 54 , 39–52.

Wolfe, J. M. (2013). Registered reports and replications in Attention, Perception, & Psychophysics.
Attention, Perception, & Psychophysics, 75 , 781–783.


