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Abstract
Publication bias and questionable research practices have long been known
to corrupt the published record. One method to assess the extent of this
corruption is to examine the meta-analytic collection of significant p values,
the so-called p-curve (Simonsohn, Nelson, & Simmons, 2014a). Inspired by
statistical research on false-discovery rates, we propose a Bayesian mixture
model analysis of the p-curve. Our mixture model assumes that significant
p values arise either from the null-hypothesis Hy (when their distribution is
uniform) or from the alternative hypothesis #; (when their distribution is
accounted for by a flexible nonparametric technique known as the Dirichlet
process mixture). The model estimates the proportion of significant results
that originate from g, but it also estimates the probability that each specific
p value originates from Hg. We apply our model to two concrete examples
from the published literature. Model code is provided in the online Supple-

mental Material.
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Psychological science is experiencing a crisis of confidence (e.g., Pashler & Wagen-
makers, 2012). In response to this crisis, psychologists have offered new guidelines for jour-
nals (e.g., Nosek et al., 2015), started large-scale replication initiatives (e.g., Open Science
Collaboration, 2015), promoted preregistration (e.g., Chambers, 2013, 2015; Wagenmakers,
Wetzels, Borsboom, van der Maas, & Kievit, 2012), suggested different statistical report-
ing practices (e.g., Eich, 2014), and developed novel statistical techniques (e.g., Francis,
2013; Guan & Vandekerckhove, in press; Simonsohn et al., 2014a; van Assen, van Aert, &
Wicherts, 2015).

Among the various newly developed statistical techniques, the p-curve procedure is
of special interest (Simonsohn et al., 2014a; Simonsohn, Nelson, & Simmons, 2014b). This
procedure considers a collection of significant p values and asks whether their distribution
contains “evidential value”. This question can be answered because of the fact that, under
Ho, the distribution of significant p values is uniform (Becker, 1991). Hence, if the observed
distribution of significant p values is relatively flat, the most likely explanation for the
findings is publication bias (e.g., Rosenthal, 1979; Sterling, 1959; Sterling, Rosenbaum, &
Weinkam, 1995). In addition, when most observed p values are near .05 this indicates that
the findings maybe have been the result of significance chasing (i.e., “p-hacking”; John,
Loewenstein, & Prelec, 2012; Simmons, Nelson, & Simonsohn, 2011). In the presence of a
true effect, however, the distribution of p values is right-skewed such that low p values occur
more often than high p values. The current p-curve analysis conducts a classical hypothesis
test on the observed p values and concludes that their distribution contains “evidential
value” when it is judged to be right-skewed.

The classical p-curve analysis is a promising tool to obtain an overall impression about
the presence of true effects. Here we present a novel and complementary Bayesian analysis
of the p-curve that approaches the problem from a slightly different angle. Similar to an
analysis of false-discovery rates, our Bayesian method assumes that the observed significant
p values may have originated from Hg or H;. The method then estimates the overall rate
of contamination from Hgy; in addition, the method estimates the probabilities that each
specific p value originates from Hy. These estimates can help assess, on a continuous scale,
the extent to which an empirical phenomenon is based on p values that are spurious. Below

we first outline the method and then apply it to two concrete examples.

The Bayesian Mixture Model for Significant P Values

We start from the assumption that the observed p-curve is a mixture between two

distributions: a uniform distribution associated with Hy and a right-skewed distribution
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associated with H;. Thus,

p(pi) = ¢ fro + (1= @) fruy,

where p; denotes a specific observed p value, and ¢ € [0, 1] represents a mixing parameter
that can be regarded as an estimate of the proportion of studies originating from Hg. Values
of ¢ near 1 indicate that the collection of studies are heavily contaminated by Hy.

As a first step, we probit-transform the p values in order to be able to use normal
distributions (e.g., Efron, 2012; Tamhane & Shi, 2009). Under Hq, the uniform distribution
of raw p values corresponds to a standard normal distribution for the probit-transformed
p values (i.e., @ 1(p) | Ho ~ N(u = 0,0% = 1)). Under H;, the exact distribution of p
values is more complex and depends on several factors such as sample size and the values
of population parameters that are relevant for the test statistic at hand (Becker, 1991).
Furthermore, a given collection of observed p values will be comprised of studies with
different sample sizes, different test statistics, and, potentially, different true effects; that
is, there exists an unknown distribution of true effects such that the collection of observed
p values is inherently heterogeneous.

Thus, in the second step, we need to address the fact that the distribution of p values
under H; is a combination of potentially many different distributions. One tempting method
to deal with this complication is to ignore it, risk the possibility of model-misspecification,
and proceed by using a simple parametric form for the probitized p values under #H; (e.g.,
®~1(p) | H1 ~ N(u,0?)). In this manuscript we explore a different method, one that re-
spects the complex distribution of p values under H; by employing a flexible nonparametric
Bayesian formalization known as the Dirichlet process mixture. Details, code, and simula-
tions can be found in the Supplemental Material available at https://osf.io/mysbp/.

The Dirichlet process (Freedman, 1963; Ferguson, 1973, 1974) is a prior for an infinite
normal mixture model, such that the complexity of the model can grow flexibly with the
data (Gershman & Blei, 2012; Miiller, Quintana, Jara, & Hanson, 2015; Navarro, Griffiths,
Steyvers, & Lee, 2006). Previous work has also used Dirichlet process mixtures to estimate
false-discovery rates (e.g., Do, Miiller, & Tang, 2005; Tang, Ghosal, & Roy, 2007); however,
because these models consider all p values —not just the ones that are significant— they are
not suitable for the analysis of p-curves.

In sum, our Bayesian model conceives of the distribution of significant p values as
a two-component mixture, where one component corresponds to the uniform distribution
of significant p values under Hy and the other component corresponds to the unknown
distribution of significant p values under H;. The unknown distribution of significant p

values under H; is accounted for using a flexible nonparametric Bayesian procedure (i.e.,
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the Dirichlet process mixture, see Supplemental Material for details). We now apply the

model to two examples.

Example 1: 587 T-Test P Values

For our first example we apply the model to a set of p values from Wetzels et al.
(2011); these authors collected the results from all 855 ¢-tests reported in the articles from
the 2007 issues of Psychonomic Bulletin & Review and Journal of Experimental Psychology:
Learning, Memory, and Cognition. Here we focus on the subset of 587 p values that were
significant. It should be noted that these significant p values are inherently heterogeneous:
they come from a wide range of empirical fields, and they were not screened for relevance.
Thus, it is important to keep in mind that many of these p values may correspond to ma-
nipulation checks, and only a subset corresponds to the test of the key research hypothesis.
Because of their heterogeneous nature, this set of p values provides a good test case for our
model.

The top-left panel of Figure 1 shows the distribution of the 587 significant p values.
The same distribution was inspected by Johnson (2013), who argued that the significant p

values

“...presumably arise from two types of experiments: experiments in which a
true effect was present and the alternative hypothesis was true, and experiments
in which there was no effect present and the null hypothesis was true. For the
latter experiments, the nominal distribution of P values is uniformly distributed
on the range (0.0,0.05) (...) The P values displayed in this plot thus represent
a mixture of a uniform distribution and some other distribution. Even without
resorting to complicated statistical methods to fit this mixture, the appearance
of this histogram suggests that many, if not most, of the P values falling above
0.01 are approximately uniformly distributed. That is, most of the significant
P values that fell in the range (0.01 — 0.05) probably represent P values that

were computed from data in which the null hypothesis of no effect was true.”

Nevertheless, the overall distribution of p values is clearly right-skewed, and many p values
are relatively low. This impression is corroborated by the results of our Bayesian mixture
model. Specifically, the top-right panel of Figure 1 shows the posterior distribution of ¢,
the Hg assignment rate. This contamination rate is estimated to be small, and a Bayesian
95% highest density interval ranges from 0.003 to 0.150. The Markov chain Monte Carlo
chains for ¢ are shown in Figure 2, supporting the claim that the samples come from the
posterior distribution.

In addition to the estimation of the overall contamination rate, the Bayesian mixture

model also allows us to estimate the probability that each individual p value is assigned to
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Figure 1. Application of the Bayesian mixture model to Example 1: 587 t-test p values. Upper-
left panel: distribution of observed p values; upper-right panel: posterior distribution of the Hg
assignment rate; lower-left panel: individual H, assignment probabilities; lower-right panel: Q-Q
plot for comparing the observed p value distribution to the posterior predictive distribution.

Ho. These estimates are shown in the lower-left panel of Figure 1. The results indicate that
none of the Hy assignment probabilities is larger than .5; this means that, starting from
a position of equipoise, all observed significant p values are more likely to stem from H;
than from Hg. This quantitative conclusion is somewhat more positive than the qualitative
conclusion drawn by Johnson (2013).

Finally, the lower-right panel of Figure 1 shows the model fit by means of a Q-Q plot.
The Q-Q plot allows a comparison between the distribution of observed p values and the
distribution of posterior predictive p values, that is, the distribution of p values predicted by
the model. Identical distributions yield a linear Q-Q plot with a slope of one. The present
Q-Q plot suggests that the model fit is excellent.
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Figure 2. Markov chain Monte Carlo samples for the H( assignment rate ¢ for Example 1: 587
t-test p values. The chains intermix, suggesting convergence to the posterior.

Example 2: Social Priming Studies and Yoked Controls

For our second example we apply the model to a set of p values from social priming
studies (e.g., Kahneman, 2011) and a matched set of p values for yoked control studies. To
obtain the p values for the social priming studies we collected a large set of articles pub-
lished by a group of prominent researchers who study social priming. We used this selection
method in order to obtain a relatively high-quality set of studies, thereby maximizing the
probability of collecting p values that are compelling and relatively uncontaminated. We
followed the p-curve instructions from Simonsohn et al. (2014a) and distilled a single signif-
icant p value from each experiment. Every p value was evaluated by three raters; occasional
differences of opinion were readily resolved by discussion.

In addition, we sought to construct an appropriate comparison set of p values as a
backdrop against which to evaluate the results for the social priming studies. This compar-
ison set was constructed by selecting, for each social priming study under consideration, a
yoked control study — that is, a study on a different topic and published in the same journal
issue immediately after the social priming study. For each experiment in the yoked control
studies, we distilled a single significant p value in the same manner as was done for the
social priming studies.

This procedure yielded a total of 159 significant social priming p values and 130 sig-
nificant yoked control p values. Further details regarding the studies that were included are
available at https://osf.i0/98qsb/ (social priming studies) and https://osf.io/2zhfy/
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Figure 3. Application of the Bayesian mixture model to Example 2: social priming studies and
yoked controls. Upper-left panel: distribution of observed p values; upper-right panel: posterior
distribution of the Hy assignment rates; lower-left panel: individual H assignment probabilities;
lower-right panel: Q-Q plot for comparing the observed p value distributions to the posterior pre-
dictive distributions.

(control studies).

Figure 3 summarizes the results from applying our Bayesian mixture model. The
upper-left panel shows the distributions of p values for the social priming experiments and
the yoked controls. Although both distributions are right-skewed, the extent of this skew
is much less pronounced than for the t-test p values from Example 1. Furthermore, the
distribution of p values for the social priming studies shows less skew than that for the
yoked control studies. Both distributions look relatively flat from .05 to .01.

The upper-right panel of Figure 3 displays the posterior distributions of the Hg as-
signment rate ¢. For both sets of p values, the degree of Hy contamination is substantial;
the Hg assignment rate for the social priming p values has a 95% highest density interval
that ranges from 0.414 to 0.865; for the yoked control p values, this interval ranges from
0.061 to 0.446. The social priming studies appear to suffer more from Hg contamination

than do the yoked controls. The Markov chain Monte Carlo chains for ¢ are shown in
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Figure 4. Markov chain Monte Carlo samples for the H( assignment rate ¢ for Example 2: social
priming studies and yoked controls. The chains intermix, suggesting convergence to the posterior.
Left panel: social priming studies; right panel: yoked controls.

Figure 4, supporting the claim that the samples come from the posterior distributions.

The lower-left panel of Figure 3 shows the H( assignment probabilities for the indi-
vidual p values. These probabilities exceed .5 for 81% of the social priming p values and
for 19% of the yoked control p values. The lower-right panel of Figure 3 shows the Q-Q
plots; the fit for both sets of p values is perhaps subject to improvement, although boot-
strap simulations indicate that the observed deviation from the identity line falls within an
acceptable range.

Thus, any sweeping negative conclusions regarding the social priming studies need to
be tempered by two insights. The first insight is that the posterior distribution of the H
assignment rate is relatively wide, and it cannot be ruled out that the contamination rate
it is as low as .4. The second insight is that the Q-Q plot reveals that, despite its flexible
nonparametric nature, the mixture model may not have been able to fully account for the
observed data pattern. For these reasons, the results of our analysis should be interpreted
with a modicum of caution. Nevertheless, our analyses certainly do suggest that the level

of Hp contamination in social priming studies warrants more scrutiny.

Concluding Comments

For studies that feature only a limited number of experiments, currently the sole
arbiter of success is whether —for each experiment— the p value is lower than .05. This
unfortunate state of affairs encourages publication bias, selective reporting, and questionable
research practices (e.g., Barber, 1976). When studies are combined, however, the shape

of the distribution of significant p values conveys additional information that allows one
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to estimate the degree of the bias. To this aim, a classical “p-curve” analysis method
was recently proposed by Simonsohn et al. (2014a). Here we presented an alternative
Bayesian analysis of the p-curve. Our nonparametric Bayesian mixture model was inspired
by a suggestion from Johnson (2013) and previous work on the control of false-discovery
rates. The mixture model estimates the extent to which the overall results have been
contaminated by Hg; in addition, the method allows researchers to estimate how likely it is
that a particular p value stems from H.

Similar to the classical analysis method for p-curves, our model makes a number of
assumptions. One assumption is that, under Hg, the distribution of p values is uniform. In
practice, this assumption may not hold; that is, particular forms of cherry-picking and ques-
tionable research practices may yield a p-curve that is right-skewed, thereby masquerading
as the signature of a real effect. Consequently, the contamination rate estimated using our
Bayesian model can be considered a lower bound on the true level of contamination from
Ho. Another assumption is that our analysis departs from a position of equipoise — the
default prior on the contamination rate is uniform from 0 to 1 (see Supplemental Material).
If needed, this default prior can be adjusted to incorporate existing knowledge; for example,
when applied to set of p values for studies on extrasensory perception, a more appropriate
prior on the contamination rate is a skewed beta distribution with a mode at ¢ = 1. The
analysis from equipoise allows one to assess the information in the data, but our final beliefs
are always a combination from the information in the data and the prior information: in
contrast to what current practice may suggest, statistical inference does not take place in
a vacuum (Savage, 1954; Lindley, 2004).

We applied our mixture model to a set of significant p values from Wetzels et al.
(2011) and to a set of significant p values from social priming and yoked control studies.
The examples highlighted the added inferential value of our model. We have provided the
model code in the online Supplemental Material, and we hope to incorporate the method
in a future release of JASP (Love et al., 2015, jasp-stats.org). This way we hope to

encourage other researchers to apply the model within their field of interest.
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